OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B119–B125

Resonant tuning fork detector for electromagnetic radiation

Andreas Pohlkötter, Ulrike Willer, Christoph Bauer, and Wolfgang Schade  »View Author Affiliations

Applied Optics, Vol. 48, Issue 4, pp. B119-B125 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz- radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650 nm and 5.26 μm . A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2 f and absorption spectroscopy of oxygen and nitric oxide, respectively.

© 2008 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(230.4910) Optical devices : Oscillators
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

Original Manuscript: July 31, 2008
Revised Manuscript: November 20, 2008
Manuscript Accepted: November 25, 2008
Published: December 22, 2008

Andreas Pohlkötter, Ulrike Willer, Christoph Bauer, and Wolfgang Schade, "Resonant tuning fork detector for electromagnetic radiation," Appl. Opt. 48, B119-B125 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311, 433-458 (1901). [CrossRef]
  2. E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317, 225-263 (1903). [CrossRef]
  3. F. Zheng, “Thermophoresis of spherical and non-spherical particles: a review of theories and experiments,” Adv. Colloid Interface Sci. 97, 255-278 (2002). [CrossRef] [PubMed]
  4. H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26, 717-734 (1995). [CrossRef]
  5. S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993). [CrossRef]
  6. B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87, 194102 (2005). [CrossRef]
  7. M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999). [CrossRef]
  8. O. Krauss and G. Wurm, “Photophoresis and the pile-up of dust in young circumstellar disks,” Astrophys. J. 630, 1088-1092 (2005). [CrossRef]
  9. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000). [CrossRef]
  10. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842-1844 (1995). [CrossRef]
  11. J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75, 415-422 (2007). [CrossRef]
  12. A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902-1904 (2002). [CrossRef]
  13. K. Karraï and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61, 197-205 (1995). [CrossRef]
  14. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited