OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B145–B150

Differential absorption lidar CO 2 laser system for remote sensing of TATP related gases

Avishekh Pal, C. Douglas Clark, Michael Sigman, and Dennis K. Killinger  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B145-B150 (2009)
http://dx.doi.org/10.1364/AO.48.00B145


View Full Text Article

Enhanced HTML    Acrobat PDF (684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A CW tunable 10.6 μm CO 2 laser differential absorption lidar (DIAL) system has been developed, for the first time to our knowledge, for the remote sensing of triacetone triperoxide (TATP) gas vapors, which have strong absorption lines at several wavelengths, including 3.3, 8.3, and 10.6 μm . The DIAL laser beam was transmitted through an enclosed absorption cell containing TATP or SF 6 , and backscattered returns were measured from a retroreflector array target at ranges of 5 100 m . DIAL sensitivity for the detection of TATP was about 0.5 ng / μl [ 52 parts in 10 6 ( ppm ) ] for a 0.3 m path.

© 2009 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

History
Original Manuscript: August 19, 2008
Manuscript Accepted: October 23, 2008
Published: January 1, 2009

Citation
Avishekh Pal, C. Douglas Clark, Michael Sigman, and Dennis K. Killinger, "Differential absorption lidar CO2 laser system for remote sensing of TATP related gases," Appl. Opt. 48, B145-B150 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-B145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Murray and J. E. Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814-817 (1978). [CrossRef] [PubMed]
  2. J. R. Quagliano, P. O. Stoutland, and R. R. Petrin, “Quantitative chemical identification of four gases in remote infrared (9-11 μm) differential absorption lidar experiments,” Appl. Opt. 36, 1915-1927 (1997). [CrossRef] [PubMed]
  3. D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37-45 (1987). [CrossRef] [PubMed]
  4. Markus W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, 1994).
  5. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, 1995), pp. 213-305.
  6. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997). [CrossRef]
  7. J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13, 5853-5863 (2005). [CrossRef] [PubMed]
  8. V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004). [CrossRef]
  9. V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007). [CrossRef] [PubMed]
  10. C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.
  11. I. Dunayevskiy, A. Tsekoun, M. Prasanna, Rowel Go, C. Kumar, and N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6406 (2007). [CrossRef] [PubMed]
  12. R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008). [CrossRef]
  13. D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008). [CrossRef]
  14. R. Matyas and J. Pachman, “Thermal stability of triacetone triperoxide,” Sci. Tech. Energetic Materials 68, 111-116(2007).
  15. J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005). [CrossRef]
  16. A. J. Bellamy, “Triacetone triperoxide: its chemicaldestruction,” J. Forensic Sci. 44, 603-608 (1999).
  17. C. K. N. Patel and R. E. Slusher, “Self- induced transparency in gases,” Phys. Rev. Lett. 19, 1019-1022 (1967). [CrossRef]
  18. L. Lyman, G. R. Anderson, A. Fisher, and B. J. Feldman, “Absorption of pulsed CO2--laser radiation by SF6 at 140 K,” Opt. Lett. 3, 238-240 (1978). [CrossRef] [PubMed]
  19. H. R. Carlon, “Infrared absorption coefficients (3-15 μm) for sulphur hexafluoride (SF6) and freon (CCl2F2),” Appl. Opt. 18, 1474-1475 (1979). [CrossRef] [PubMed]
  20. E. E. Uthe, “Airborne CO2DIAL measurement of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492-2498 (1986). [CrossRef] [PubMed]
  21. NIST Standard Reference Database 79: Infrared Database.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited