OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B172–B182

Distributed feedback diode laser spectrometer at 2.7 μm for sensitive, spatially resolved H 2 O vapor detection

Karl Wunderle, Steven Wagner, Igor Pasti, Roland Pieruschka, Uwe Rascher, Ulrich Schurr, and Volkert Ebert  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B172-B182 (2009)
http://dx.doi.org/10.1364/AO.48.00B172


View Full Text Article

Enhanced HTML    Acrobat PDF (1056 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new, compact, spatially scanning, open-path 2.7 μm tunable diode laser absorption spectrometer with short absorption path lengths below 10 cm was developed to analyze the spatiotemporal dynamics of one-dimensional (1D) spatial water vapor gradients. This spectrometer, which is based on a room- temperature distributed feedback diode laser, is capable of measuring absolute, calibration-free, line-of-sight averaged, but laterally resolved 1D H 2 O concentration profiles with a minimum fractional optical resolution of 2.1 × 10 3 optical density (OD) ( 2.5 × 10 4 OD after a background subtraction procedure), which permits a signal-to-noise-ratio of 407 (3400) at 10 , 000 parts in 10 6 ( ppm ) H 2 O , or normalized sensitivities of 2.6 ppm m ( 0.32 ppm m ) at 0.5 Hz duty cycle. The spectrometer’s lateral spatial resolution (governed by the 500 μm sampling beam diameter) was validated by analyzing a well-defined laminar jet of nitrogen gas in humidified air. This scanning setup was then used to (a) quantitatively investigate for what we believe to be the first time the H 2 O boundary layer from 0.7 to 11 mm beneath the stomatous side of a single, undetached plant leaf, and (b) to study the temporal boundary layer dynamics and its dependence on stepwise light stimulation of the photosynthetic system. In addition the 2.7 μm diode laser was carefully characterized in terms of spectral purity, beam profile, as well as quasi-static and dynamic wavelength tuning coefficients.

© 2009 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: August 19, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 17, 2008
Published: January 16, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Karl Wunderle, Steven Wagner, Igor Pasti, Roland Pieruschka, Uwe Rascher, Ulrich Schurr, and Volkert Ebert, "Distributed feedback diode laser spectrometer at 2.7 μm for sensitive, spatially resolved H2O vapor detection," Appl. Opt. 48, B172-B182 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-B172


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971). [CrossRef] [PubMed]
  2. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, 1994), Chap. 5.
  3. C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.
  4. V. Ebert and J. Wolfrum, “Absorption spectroscopy,” in Optical Measurements--Techniques and Applications, F. Mayinger and O. Feldmann, eds. (Springer-Verlag, 2001), pp. 227-265.
  5. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the a-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).
  6. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009). [CrossRef]
  7. H. Teichert, T. Fernholz, and V. Ebert, “In-situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant,” Appl. Opt. 42, 2043-2051 (2003). [CrossRef] [PubMed]
  8. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000). [CrossRef]
  9. M. P. Arroyo, S. Langlois, and R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296-3307 (1994). [CrossRef] [PubMed]
  10. R. K. Hanson and J. Jeffries, “Diode laser sensors for ground testing,” AIAA paper 3441 (American Institute of Aeronautics and Astronautics, 2006).
  11. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002). [CrossRef]
  12. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998). [CrossRef]
  13. A. D. Griffiths and A. F. P. Houwing, “Diode laser absorption spectroscopy of water vapor in a scramjet combustor,” Appl. Opt. 44, 6653-6659 (2005). [CrossRef] [PubMed]
  14. P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996). [CrossRef]
  15. J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996). [CrossRef] [PubMed]
  16. R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161-19172 (1998). [CrossRef]
  17. W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005). [PubMed]
  18. F. Lübken, F. Dingler, H. von Lucke, J. Anders, W. J. Riedel, and H. Wolf, “MASERATI: a RocketBorne Tunable Diode Laser Absorption Spectrometer,” Appl. Opt. 38, 5338-5349(1999). [CrossRef]
  19. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, O. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room-temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45, 4957-4965 (2006). [CrossRef] [PubMed]
  20. J. T. C. Liu, G. B. Rieker, J. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005). [CrossRef] [PubMed]
  21. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006). [CrossRef]
  22. A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006). [CrossRef]
  23. V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005). [CrossRef]
  24. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. Kerstel, “Isotope analysis of water by means of near infrared dual-wavelength diode laser spectroscopy,” Opt. Express 11, 1566-1576 (2003). [CrossRef] [PubMed]
  25. B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.
  26. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008). [CrossRef]
  27. X. Zhou, X. J. B. Liu, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tuneable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003). [CrossRef]
  28. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998). [CrossRef]
  29. C. R. Webster, G. J. Flesch, K. Mansour, R. Haberle, and J. Baumann, “Mars laser hygrometer,” Appl. Opt. 43, 4436-4445 (2004). [CrossRef] [PubMed]
  30. C. G. Tarsitano and C. R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt. 46, 6923-6935 (2007). [CrossRef] [PubMed]
  31. A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008). [CrossRef]
  32. G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008). [CrossRef]
  33. R. Villareal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005). [CrossRef]
  34. B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004). [CrossRef]
  35. P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004). [CrossRef] [PubMed]
  36. F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002). [CrossRef]
  37. F.-Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-946 (2001). [CrossRef]
  38. K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).
  39. B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61-88 (1967). [CrossRef]
  40. L. Galatry, “Simultaneous effect of doppler and foreign gastions of broadening on spectral lines,” Phys. Rev. 122, 1218-1223 (1961). [CrossRef]
  41. S. G. Rautian and I. C. Sobel'man, “The Effect of collisions on the Dopplerbroadening of spectral lines,” Sov. Phys. Usp. 9, 701-716 (1967). [CrossRef]
  42. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  43. S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).
  44. K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math 2, 164-168 (1944).
  45. D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431-441 (1963). [CrossRef]
  46. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005). [CrossRef]
  47. J. L. Monteith and M. Unsworth, Principles of Environmental Physics (Academic, 2008).
  48. H. Jones, “Stomatal control of photosynthesis and transpiration,” J. Exp. Bot. 49, 387-398 (1998). [CrossRef]
  49. R. W. Pearcy, J. P. Krall, and G. F. Sassenrath-Cole, “Photosynthesis if fluctuating light environment,” in Photosynthesis and the Environment, N. R. Baker, ed. (Kluwer Academic, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited