OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B32–B42

Impact of collisional quenching on the detection of Hg Cl 2 via photofragment emission

Alexandra A. Hoops and Thomas A. Reichardt  »View Author Affiliations

Applied Optics, Vol. 48, Issue 4, pp. B32-B42 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of collisional quenching on photofragment emission (PFE) detection of vapor-phase Hg Cl 2 in combustion flue gas constituents are investigated. Exciting Hg Cl 2 via the 1 Π u 1 1 Σ g + 1 transition, time-resolved measurements of emission from the Hg ( 6 3 P 1 ) daughter in buffer-gas mixtures of N 2 , O 2 , and CO 2 indicate that the fragmentation pathway passes through a long-lived intermediate species, which we assign to Hg ( 6 3 P 2 ) . Total quenching rate coefficients of Hg ( 6 3 P 1 ) by N 2 , O 2 , and CO 2 are consistent with values reported in the literature. In addition, total quenching rate coefficients for the intermediate Hg ( 6 3 P 2 ) state are determined to be 1.72 ( ± 0.08 ) × 10 10 cm 3 molecule 1 s 1 and 2.90 ( ± 0.37 ) × 10 10 cm 3 molecule 1 s 1 for N 2 and O 2 , respectively. An analysis of the impact of the collisionally dependent energy-transfer process that precedes the formation of Hg ( 6 3 P 1 ) on the use of PFE to measure Hg Cl 2 concentration is presented.

© 2008 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: July 15, 2008
Manuscript Accepted: August 15, 2008
Published: October 22, 2008

Alexandra A. Hoops and Thomas A. Reichardt, "Impact of collisional quenching on the detection of HgCl2 via photofragment emission," Appl. Opt. 48, B32-B42 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1-72(1996). [CrossRef]
  2. S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996). [CrossRef]
  3. B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995). [CrossRef]
  4. P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998). [CrossRef]
  5. P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331-381 (2002). [CrossRef]
  6. R. C. Oldenborg and S. L. Baughcum, “Photofragment fluorescence as an analytical technique: Application to gas-phase alkali chlorides,” Anal. Chem. 58, 1430-1436 (1986). [CrossRef]
  7. S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).
  8. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C : a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677-6681 (2001). [CrossRef]
  9. C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006). [CrossRef]
  10. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F.-Y. Yueh, and D. L. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411-1417 (1999). [CrossRef]
  11. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327-331 (2002). [CrossRef]
  12. J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000). [CrossRef]
  13. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation--laser-induced fluorescence,” Appl. Opt. 35, 3998-4003 (1996). [CrossRef] [PubMed]
  14. S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985). [CrossRef]
  15. R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986). [CrossRef]
  16. M. O. Rodgers, K. Asai, and D. D. Davis, “Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases,” Appl. Opt. 19, 3597-3605 (1980). [CrossRef] [PubMed]
  17. K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997). [CrossRef]
  18. A. A. Hoops and T. A. Reichardt, “Pulsed laser photofragment emission for detection of mercuric chloride,” Appl. Opt. 45, 6180-6186 (2006). [PubMed]
  19. R. B. Barat and A. T. Poulos, “Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy,” Appl. Spectrosc. 52, 1360-1363 (1998).
  20. T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978). [CrossRef]
  21. W. R. Wadt, “The electronic structure of HgCl and HgBr,” Appl. Phys. Lett. 34, 658-660 (1979). [CrossRef]
  22. W. R. Wadt, “The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation,” J. Chem. Phys. 72, 2469-2478 (1980). [CrossRef]
  23. C. Whitehurst and T. A. King, “Multiphoton excitation of mercury atoms by photodissociation of HgX2(X=Cl,Br,I),” J. Phys. B 20, 4053-4064 (1987). [CrossRef]
  24. C. Roxlo and A. Mandl, “Vacuum ultraviolet absorption cross sections for halogen containing molecules,” J. Appl. Phys. 51, 2969-2972 (1980). [CrossRef]
  25. D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982). [CrossRef]
  26. D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985). [CrossRef]
  27. P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972). [CrossRef]
  28. M. Wehrli, “Elektronenbandenspektren der linearen moleküle HgCl2, HgBr2, HgJ2, und TeCl2,” Helv. Phys. Acta 11, 339-356 (1938).
  29. K. Wieland, “Absorptions--und fluoreszenzspektren dampfförmiger quecksilberhalogenide II. HgBr2 und HgCl2,” Z. Phys. 77, 157-165 (1932). [CrossRef]
  30. A. A. Hoops, T. A. Reichardt, D. A. V. Kliner, J. P. Koplow, and S. W. Moore, “Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier,” Appl. Opt. 46, 4008-4014 (2007). [CrossRef] [PubMed]
  31. CRC Handbook of Chemistry and Physics, 67th ed., R. Weast, ed. (CRC Press, 1986).
  32. L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001). [CrossRef]
  33. J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966). [CrossRef]
  34. J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).
  35. J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971). [CrossRef]
  36. H. Horiguchi and S. Tsuchiya, “Quenching of excited mercury atoms (63P1 and 63P0) in molecular collisions,” Bull. Chem. Soc. Jpn. 47, 2768-2774 (1974). [CrossRef]
  37. J. V. Michael and G. N. Suess, “Absolute quenching cross sections of Hg(3P1) with various molecules,” J. Phys. Chem. 78, 482-487 (1974). [CrossRef]
  38. J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972). [CrossRef]
  39. A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979). [CrossRef]
  40. A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964). [CrossRef]
  41. S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983). [CrossRef]
  42. J. G. Eden, “VUV-pumped HgCl laser,” Appl. Phys. Lett. 33, 495-497 (1978). [CrossRef]
  43. C. Whitehurst and T. A. King, “Spectroscopy, kinetics and laser effects of photodissociated HgX(X=I,Br and Cl),” J. Phys. B 20, 4035-4051 (1987). [CrossRef]
  44. L. J. Curtis, “A predictive data-based exposition of nsnp 1,3P1 lifetimes in the Cd and Hg isoelectronic sequences,” J. Phys. B 26, L589-L594 (1993). [CrossRef]
  45. R. H. Garstang, “Magnetic quadrupole line intensities,” Astrophys. J. 148, 579-584 (1967). [CrossRef]
  46. H. F. Krause and S. Datz, “Crossed molecular beam study of electronic energy transfer: Hg(36P2)+NO(X2Π)-->NO(A2Σ)+Hg(61S0),” Chem. Phys. Lett. 41, 339-343(1976). [CrossRef]
  47. E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988). [CrossRef]
  48. R. Burnham and N. Djeu, “Absolute rates of collisional deactivation of Hg(6p3P2) by nitrogen and carbon monoxide,” J. Chem. Phys. 61, 5158-5161 (1974). [CrossRef]
  49. F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972). [CrossRef]
  50. F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited