OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B8–B16

Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol

Anna K. Jagodnicka, Tadeusz Stacewicz, Grzegorz Karasiński, Michał Posyniak, and Szymon P. Malinowski  »View Author Affiliations

Applied Optics, Vol. 48, Issue 4, pp. B8-B16 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method of retrieval of the aerosol particle size distribution (APSD) from multiwavelength lidar signals is presented. Assumed distribution (usually a bimodal combination of lognormal functions) with a few free parameters is directly substituted into the lidar equations. The minimization technique allows one to find the parameters that provide the best fit of the assumed APSD by comparison of theoretically generated and experimental signals. Prior knowledge of the lidar ratio is not required. The approach was tested on a typical synthetic APSD consisting of spherical droplets. Comparison of lidar measurements with results from a condensation particle counter was also performed. For signals registered at 3 5 wavelengths from the UV to the near IR a satisfactory retrieval of synthetic APSD is possible for the particles within the 100 3000 nm range.

© 2008 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: May 16, 2008
Revised Manuscript: August 18, 2008
Manuscript Accepted: August 19, 2008
Published: October 3, 2008

Anna K. Jagodnicka, Tadeusz Stacewicz, Grzegorz Karasiński, Michał Posyniak, and Szymon P. Malinowski, "Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol," Appl. Opt. 48, B8-B16 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1999).
  3. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  4. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, 1997).
  5. G. M. Wing and J. D. Zahrt, Primer on Integral Equations of the First Kind (Society for Industrial and Applied Mathematics, 1991) [CrossRef]
  6. C. E. Groetsch Inverse Problems in the Mathematical Sciences (Vieweg, 1993).
  7. B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971). [CrossRef]
  8. K. Rajeev and K. Parameswaran, “Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution,” Appl. Opt. 37, 4690-4700 (1998). [CrossRef]
  9. J. Heintzenberg, H. Müller, H. Quenzel, and E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308-1315 (1981). [CrossRef] [PubMed]
  10. H. Müller and H. Quenzel, “Information content of multispectral lidar measurements with respect to the aerosol size distribution,” Appl. Opt. 24, 648-654 (1985). [CrossRef] [PubMed]
  11. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346-2357 (1999).. [CrossRef]
  12. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358 -2368 (1999). [CrossRef]
  13. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685-3699 (2002). [CrossRef] [PubMed]
  14. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180-1195 (2004). [CrossRef] [PubMed]
  15. I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292-5303 (2005). [CrossRef] [PubMed]
  16. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329-1342 (2001). [CrossRef]
  17. C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005). [CrossRef]
  18. S. K. Shifrin and I. G. Zolotov, “Determination of the aerosol particle-size distribution from simultaneous data on spectral attenuation and the small-angle phase function,” Appl. Opt. 36, 6047-6056 (1997). [CrossRef] [PubMed]
  19. S. K. Shifrin and I. Zolotov, “The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data,” J. Atmos. Ocean. Technol. 20, 1411-1420 (2003). [CrossRef]
  20. D. A. Ligon, T. W. Chen, and J. B. Gillespie, “Determination of aerosol parameters from light--scattering data using an inverse Monte Carlo technique,” Appl. Opt. 35, 4297-4303 (1996). [CrossRef] [PubMed]
  21. D. A. Ligon, J. B. Gillespie, and P. Pellegrino, “Aerosol properties from spectral extinction and backscatter estimated by an inverse Monte Carlo method,” Appl. Opt. 39, 4402-4410(2000). [CrossRef]
  22. H. Yoshiyama, A. Ohi, and K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642-2648 (1996). [CrossRef] [PubMed]
  23. Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003). [CrossRef]
  24. T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007). [CrossRef]
  25. J. A. Curcio and G. L. Knestrick, “Correlation of atmospheric transmission with backscattering,” J. Opt. Soc. Am. 48, 686-689 (1958). [CrossRef]
  26. O. D. Barteneva, “Scattering functions of light in the atmospheric boundary,” Bull. Acad. Sci. USSR 12, 1237-1244(1960).
  27. S. Twomey and H. B. Howell, “The relative merit of white and monochromatic light for the determination of visibility by backscattering measurements,” Appl. Opt. 4, 501-506 (1965). [CrossRef]
  28. E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-786 (2004). [CrossRef]
  29. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929-3932 (1985). [CrossRef] [PubMed]
  30. G. Pappalardo, “Aerosol lidar ratio measurement in the framework of EARLINET,” Geophys. Res. Abstr. 7, 08329 (2005).
  31. E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003). [CrossRef]
  32. Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003)., [CrossRef]
  33. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  34. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  35. C. Fröhlich and G. E. Shaw, “New determination of Rayleigh scattering in the terrestrial atmosphere,” Appl. Opt. 19, 1773-1775 (1980). [CrossRef] [PubMed]
  36. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999). [CrossRef]
  37. E. J. Welton, “Measurements of aerosol opical properties over the ocean using sunphotmetry and lidar,” Ph.D. dissertation (University of Miami, Coral Gables, Florida, 1998).
  38. G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007). [CrossRef]
  39. M. Pahlow, D. Müller, M. Tesche, H. Eichler, G. Feingold, W. L. Eberhard, and Y-F. Cheng, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements,” Appl. Opt. 45, 7429-7442(2006). [CrossRef] [PubMed]
  40. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications, (Wiley, 1984).
  41. B. R. Herman, B. Gross, F. Moshary, and S. Ahmed, “Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements,” Appl. Opt. 47, 1617-1627 (2008). [CrossRef] [PubMed]
  42. K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).
  43. R. Jaenicke, “Tropospheric aerosols,” in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic,1993).
  44. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998). [CrossRef]
  45. J. Piskozub, “Analiza Możliwości Zastosowania Lidaru Wieloczęstościowego Do Badania Aerozolu Morskiego--Rozwiązanie Problemu Odwrotnego,” Fizyka Morza 4, 5-24 (1985).
  46. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).
  47. F. E. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755-759 (1972). [CrossRef] [PubMed]
  48. H. W. Ott, Noise Reduction Techniques in Electronic Systems, (Wiley-Interscience, 1988)
  49. K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).
  50. S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).
  51. “Particle Measurement Systems,” Technical documentation of CSASP-100-HV, Boulder, Colo., USA.
  52. A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited