OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 881–885

Liquid-filled microstructured polymer fibers as monolithic liquid-core array fibers

Jian Wang and Lili Wang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 5, pp. 881-885 (2009)
http://dx.doi.org/10.1364/AO.48.000881


View Full Text Article

Enhanced HTML    Acrobat PDF (661 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid-filled microstructured polymer optical fibers (MPOFs) as monolithic liquid-core array fiber are proposed and prepared by injecting high-refractive-index liquid into the holes array of the MPOFs. One example for potential applications is demonstrated as a new kind of coherent imaging fiber. It provides great potential for applications in chemical sensing, biosensors, and endoscopy, particularly in bifunctional detection.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2350) Fiber optics and optical communications : Fiber optics imaging

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 6, 2008
Revised Manuscript: November 14, 2008
Manuscript Accepted: January 5, 2009
Published: February 2, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jian Wang and Lili Wang, "Liquid-filled microstructured polymer fibers as monolithic liquid-core array fibers," Appl. Opt. 48, 881-885 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-5-881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Altkorn, I. Koev, R. P. Van Duyne, and M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36, 8992-8998 (1997). [CrossRef]
  2. G. E. Walrafen and J. Stone, “Intensification of spontaneous Raman spectra by use of liquid core optical fibers,” Appl. Spectrosc. 26, 585-589 (1972). [CrossRef]
  3. Y. J. Tian, L. Y. Zhang, J. Zuo, Z. W. Li, S. Q. Gao, and G. H. Lu, “Raman sensitivity enhancement for aqueous absorbing sample using Teflon-AF 2400 liquid core optical fibre cell,” Anal. Chim. Acta 581, 154-158 (2007). [CrossRef] [PubMed]
  4. Y. H. Xu, X. F. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872-1878 (2008). [CrossRef]
  5. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786-4791 (2005). [CrossRef] [PubMed]
  6. D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46, 1726-1734 (2007). [CrossRef] [PubMed]
  7. J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett. 33, 1729-1731 (2008). [CrossRef] [PubMed]
  8. G. Vienne, M. Yan, T. Luo, T. K. Liang, P. Ho, and C. Lin, “Liquid core fibers based on hollow core microstructured fibers,” in Proceedings of IEEE Conference on Lasers and Electro-Optics, Pacific Rim (IEEE, 2005), pp. 551-552. [CrossRef]
  9. C. J. De Matos, C. M. B. Cordeiro, E. M. dos Santos, J. S. Ong, A. Bozolan, and C. H. B. Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15, 11207-11212 (2007). [CrossRef] [PubMed]
  10. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15, 16413-16423 (2007). [CrossRef] [PubMed]
  11. K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67, 2750-2757 (1995). [CrossRef] [PubMed]
  12. Y. Li, T. Wang, H. Kosaka, S. Kawai, and K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920-6933 (1996). [CrossRef] [PubMed]
  13. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical cavity surface emitting lasers to a receiver array via a fiber image guide,” Appl. Opt. 39, 683-689 (2000). [CrossRef]
  14. C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76, 7202-7210 (2004). [CrossRef] [PubMed]
  15. M. E. Bosch, A. J. R. Sánchez , F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797-859 (2007). [CrossRef]
  16. J. Ai and Y. Li, “Polymer fiber-image-guide-based embedded optical circuit board,” Appl. Opt. 38, 325-332 (1999). [CrossRef]
  17. M. A. van Eijkelenborg, “Imaging with microstructured polymer fibre,” Opt. Express 12, 342-346 (2004). [CrossRef] [PubMed]
  18. J. Wang, X. H. Yang, and L. L. Wang, “Fabrication and experimental observation of monolithic multi-air-core fiber array for image transmission,” Opt. Express 16, 7703-7708 (2008). [CrossRef] [PubMed]
  19. D. N. Payne and W. A. Gambling, “New low-loss liquid-core fiber waveguide,” Electron. Lett. 8, 374-376 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited