Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computationally efficient gradient matrix of optical path length in axisymmetric optical systems

Not Accessible

Your library or personal account may give you access

Abstract

We develop a mathematical method for determining the optical path length (OPL) gradient matrix relative to all the system variables such that the effects of variable changes can be evaluated in a single pass. The approach developed avoids the requirement for multiple ray-tracing operations and is, therefore, more computationally efficient. By contrast, the effects of variable changes on the OPL of an optical system are generally evaluated by utilizing a ray-tracing approach to determine the OPL before and after the variable change and then applying a finite-difference (FD) approximation method to estimate the OPL gradient with respect to each individual variable. Utilizing a Petzval lens system for verification purposes, it is shown that the approach developed reduces the computational time by around 90% compared to that of the FD method.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
First-order gradients of skew rays of axis-symmetrical optical systems

Psang Dain Lin and Chuang-Yu Tsai
J. Opt. Soc. Am. A 24(3) 776-784 (2007)

Second-order derivatives of optical path length of ray with respect to variable vector of source ray

Yu-Bin Chen and Psang Dain Lin
Appl. Opt. 51(22) 5552-5562 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved