OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 911–918

Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel

José Luis Martínez, Antonio Martínez-García, and Ignacio Moreno  »View Author Affiliations


Applied Optics, Vol. 48, Issue 5, pp. 911-918 (2009)
http://dx.doi.org/10.1364/AO.48.000911


View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we describe the experimental realization of a simple scheme capable of implementing RGB improved dynamic color binary-phase Fourier computer-generated holograms (CGHs) by means of a single ferroelectric liquid crystal on silicon (FLCOS) display and an electronically controlled color-filter wheel. Tricolor multiwavelength illumination is achieved by aligning an Ar–Kr laser (wavelengths λ B = 488 nm and λ G = 568 nm ) and a He–Ne laser ( λ R = 633 nm ). Chromatic compensation is achieved by synchronizing a time sequence of properly scaled CGHs displayed on the FLCOS display with the corresponding filter from the color wheel. Quality CGHs are designed for each color component by using an optimized iterative Fourier transform algorithm applied to a phase-only modulation display. As a result, we present excellent experimental results on the reconstruction of these time-multiplexed wavelength-compensated diffractive optical elements and color CGHs.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators
(230.2035) Optical devices : Dispersion compensation devices

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: November 14, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: January 5, 2009
Published: February 2, 2009

Citation
José Luis Martínez, Antonio Martínez-García, and Ignacio Moreno, "Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel," Appl. Opt. 48, 911-918 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-5-911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Millán, M. J. Yzuel, J. Campos, and C. Ferreira, “Different strategies in optical recognition of polychromatic images,” Appl. Opt. 31, 2560-2567 (1992). [CrossRef] [PubMed]
  2. Z. Q. Wang, C. M. Cartwright, C. Southar, and W. A. Gillespie, “Real-time color image correlator with a color liquid-crystal television and a Fresnel holographic filter,” Appl. Opt. 32, 715-717 (1993). [CrossRef] [PubMed]
  3. M. L. Hsieh, K. Y. Hsu, and H. Zhai, “Color image recognition by use of a joint-transform correlator of three liquid-crystal televisions,” Appl. Opt. 41, 1500-1504(2002). [CrossRef] [PubMed]
  4. I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144-150 (1998). [CrossRef]
  5. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, “Achromatic Fourier transforming properties of a separated diffractive lens doublet: theory and experiment,” Appl. Opt. 37, 6164-6173 (1998). [CrossRef]
  6. P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992). [CrossRef]
  7. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference light of laser,” Opt. Rev. 10, 339-341 (2003). [CrossRef]
  8. T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007). [CrossRef]
  9. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320-4325 (2004). [CrossRef] [PubMed]
  10. A. Márquez, C. Iemmi, J. Campos, J. C. Escalera, and M. J. Yzuel, “Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator,” Opt. Express 13, 716-730 (2005). [CrossRef] [PubMed]
  11. A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Achromatic diffractive lens written onto a liquid crystal display,” Opt. Lett. 31, 392-394 (2006). [CrossRef] [PubMed]
  12. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of programmable Fresnel lenses,” Opt. Express 14, 6226-6242 (2006). [CrossRef] [PubMed]
  13. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103-9111 (2006). [CrossRef] [PubMed]
  14. M. L. Huebschman, B. Munjuluri, and H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437-445(2003). [CrossRef] [PubMed]
  15. A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008). [CrossRef]
  16. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278-6284 (2004). [CrossRef] [PubMed]
  17. A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006). [CrossRef]
  18. J. A. Davis and M. A. Waring, “Contrast ratio improvement for the two-dimensional magneto-optic spatial light modulator,” Appl. Opt. 31, 6183-6184 (1992). [CrossRef] [PubMed]
  19. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423-6432 (1995). [CrossRef]
  20. T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel,” Opt. Express 13, 4196-4201 (2005). [CrossRef] [PubMed]
  21. T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008). [CrossRef]
  22. M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002). [CrossRef]
  23. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961-969 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited