OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 941–948

Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning

Jan A. N. Buytaert and Joris J. J. Dirckx  »View Author Affiliations


Applied Optics, Vol. 48, Issue 5, pp. 941-948 (2009)
http://dx.doi.org/10.1364/AO.48.000941


View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new optical-fluorescence microscopy technique, called HR-OPFOS, is discussed and situated among similar OPFOS-implementations. OPFOS stands for orthogonal-plane fluorescence optical sectioning and thus is categorized as a laser light sheet based fluorescence microscopy method. HR-OPFOS is used to make tomographic recordings of macroscopic biomedical specimens in high resolution. It delivers cross sections through the object under study with semi-histological detail, which can be used to create three-dimensional computer models for finite-element modeling or anatomical studies. The general innovation of this class of microscopy setup consists of the separation of the illumination and observation axes, but now in our setup combined with focal line scanning to improve sectioning resolution. HR-OPFOS is demonstrated on gerbil hearing organs and on mouse and bird brains. The necessary specimen preparation is discussed.

© 2009 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.2945) Imaging systems : Illumination design
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 18, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: December 19, 2008
Published: February 3, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jan A. N. Buytaert and Joris J. J. Dirckx, "Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning," Appl. Opt. 48, 941-948 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-5-941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. R. Gea, W. F. Decraemer, and J. J. J. Dirckx, “Region of interest micro-CT of the middle ear: A practical approach,” J. X-Ray Sci. Technol. 13, 137-147 (2005).
  2. B. Masschaele, V. Cnudde, M. Dierick, P. Jacobs, L. V. Hoorebeke, and J. Vlassenbroeck, “UGCT: new x-ray radiography and tomography facility,” Nucl. Instrum. Meth. A 580, 266-269 (2007). [CrossRef]
  3. M. M. Henson, O. W. Henson, S. L. Gewalt, J. L. Wilson, and G. A. Johnson, “Imaging the cochlea by magnetic resonance microscopy,” Hear. Res. 75, 75-80 (1994). [CrossRef] [PubMed]
  4. J. M. Tyszka, S. E. Fraser, and R. E. Jacobs, “Magnetic resonance microscopy: recent advantages and applications,” Curr. Opin. Biotechnol. 16, 93-99 (2005). [CrossRef] [PubMed]
  5. W. J. Weninger, S. Meng, J. Streicher, and G. B. Müller, “A new episcopic method for rapid 3-D reconstruction: applications in anatomy and embryology,” Anat. Embryol. 197, 341-348 (1998). [CrossRef] [PubMed]
  6. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  7. A. Voie, D. Burns, and F. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229-236 (1993). [CrossRef] [PubMed]
  8. A. Voie, “Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy,” Hear. Res. 171, 119-128 (2002). [CrossRef] [PubMed]
  9. W. Valk, H. Wit, J. Segenhout, F. Dijk, J. van der Want, and F. Albers, “Morphology of the endolymphatic sac in the guinea pig after an acute endolymphatic hydrops,” Hear. Res. 202, 180-187 (2005). [CrossRef] [PubMed]
  10. J. A. N. Buytaert and J. J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning 3-D imaging technique for biomedical specimens, featuring 2 ?m slicing resolution,” J Biomed. Opt. 12, 014039 (2007). [CrossRef] [PubMed]
  11. J. A. N. Buytaert and J. J. J. Dirckx, “High-resolution 3-D imaging of middle ear ossicles and soft tissue structures of intact gerbil temporal bones using orthogonal-plane fluorescence optical sectioning,” in Middle Ear Mechanics in Research and Otology, A. Eiber and A. Huber, eds. (World Scientific, 2007), pp. 282-288. [CrossRef]
  12. R. Hofman, J. Segenhout, J. A. N. Buytaert, J. J. J. Dirckx, and H. Wit, “Morphology and function of Bast's valve; Additional insight in its functioning using 3D-reconstruction,” Eur. Arch. Oto-Rhino-L. 265, 153-157 (2008). [CrossRef]
  13. J. A. N. Buytaert and J. J. J. Dirckx, “High-resolution virtual optical-sectioning imaging and tomography for 3-D modeling of biomedical specimens,” in Biomedical Optics Topical Meeting, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BWG5.
  14. H. Siedentopf and R. Zsigmondy, “Uber die Sichtbarmachung und Grössenbestimmung ultramikroskopischer Teilchen,” Ann. Phys. 4, (1903).
  15. H. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. Mauch, K. Deininger, J. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331-336 (2007). [CrossRef] [PubMed]
  16. E. Fuchs, J. Jaffe, R. Long, and F. Azam, “Thin laser light sheet microscope for microbial oceanography,” Opt. Express 10, 145-154 (2002). [PubMed]
  17. C. Davis, “Optical imaging of ocean plankton: a fantastic voyage,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper DMB1.
  18. J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16, 7142-7152 (2008). [CrossRef] [PubMed]
  19. W. Spalteholz, Uber das Durchsichtigmachen van menschlichen und tierischen Präparaten (Verlag S. Hirzel, 1911).
  20. J. Swoger, J. Bene, F. D. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007-1009 (2004). [CrossRef] [PubMed]
  21. S. Lindek and E. H. Stelzer, “Confocal theta microscopy and 4Pi-confocal theta microscopy,” Proc. SPIE 2184, 188-194(1994). [CrossRef]
  22. J. Swoger, J. Huisken, and E. H. K. Stelzer, “Multiple imaging axis microscopy improves resolution for thick-sample applications,” Opt. Lett. 28, 1654-1656 (2003). [CrossRef] [PubMed]
  23. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32, 2608-2610 (2007). [CrossRef] [PubMed]
  24. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311-313 (2007). [PubMed]
  25. S. Tinling, R. Giberson, and R. Kullar, “Microwave exposure increases bone demineralization rate independent of temperature,” J. Microsc. 215, 230-235 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1598 KB)     
» Media 2: MPG (3900 KB)     
» Media 3: MPG (3629 KB)     
» Media 4: MPG (2718 KB)     
» Media 5: MPG (2980 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited