OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 958–963

Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation

R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch  »View Author Affiliations

Applied Optics, Vol. 48, Issue 5, pp. 958-963 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thermal oxidation fabrication technique is employed to form low-loss high-index-contrast silicon shallow-ridge waveguides in silicon-on-insulator (SOI) with maximally tight vertical confinement. Drop-port responses from weakly coupled ring resonators demonstrate propagation losses below 0.36 dB / cm for TE modes. This technique is also combined with “magic width” designs mitigating severe lateral radiation leakage for TM modes to achieve propagation loss values of 0.94 dB / cm . We discuss the fabrication process utilized to form these low-loss waveguides and implications for sensor devices in particular.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(130.5990) Integrated optics : Semiconductors

ToC Category:
Integrated Optics

Original Manuscript: July 10, 2008
Revised Manuscript: January 7, 2009
Manuscript Accepted: January 9, 2009
Published: February 4, 2009

R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, "Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation," Appl. Opt. 48, 958-963 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006). [CrossRef]
  2. J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282-288 (1990). [CrossRef]
  3. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007). [CrossRef]
  4. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer Verlag, 1990), pp. 7-87. [CrossRef]
  5. T. L. Koch, R. M. Pafchek, and M. A. Webster, “Fabrication of optical waveguides,” U.S. patent application 20060098928 (11 May 2006).
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344-3346 (2005). [CrossRef]
  7. M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005). [CrossRef]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  9. Rsoft Design Group, Inc., 400 Executive Boulevard, Suite 100, Ossining, N.Y. 10562, USA, www.rsoftdesign.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited