OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 969–973

Coherence length tunable semiconductor laser with optical feedback

Yuncai Wang, Lingqin Kong, Anbang Wang, and Linlin Fan  »View Author Affiliations

Applied Optics, Vol. 48, Issue 5, pp. 969-973 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the experimental results to continuously tune the coherence length of a semiconductor laser using an optical feedback scheme. The coherence length can be controlled by adjusting the feedback strength when a semiconductor laser operates in a coherence collapse regime. Fine structures of the fringe visibility of the laser output show that the coherence length of the semiconductor laser can be shortened from several meters of the solitary laser to 100 μm by the long-cavity optical feedback technique. Experimental results indicate that the coherence length of the laser, depending strongly on the feedback strength, is insensitive to its bias current.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(140.1540) Lasers and laser optics : Chaos
(140.2020) Lasers and laser optics : Diode lasers
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 13, 2008
Revised Manuscript: January 14, 2009
Manuscript Accepted: January 15, 2009
Published: February 4, 2009

Yuncai Wang, Lingqin Kong, Anbang Wang, and Linlin Fan, "Coherence length tunable semiconductor laser with optical feedback," Appl. Opt. 48, 969-973 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Afzali and A. T. Rezakhani, “Order parameter of a nanometre-scale s-wave superconducting grain in quantum tunnelling process: frequency space analysis,” Chin. Phys. Lett. 23, 967-970 (2006). [CrossRef]
  2. Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17, 919-935 (1981). [CrossRef]
  3. S. Donati, “Gyroscopes,” in Electro-Optical Instrumentation: Sensing and Measuring with Lasers (Prentice-Hall, 2004), Chap. 7, p. 277.
  4. M. Peil, I. Fischer, W. Elsässer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89, 091106 (2006). [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  6. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151-154 (2000). [CrossRef]
  7. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  8. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 ?m distributed feedback lasers,” J. Lightwave Technol. 4, 1655-1661 (1986). [CrossRef]
  9. G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468-471 (1984). [CrossRef]
  10. P. Dowd, I. H. White, M. R. T. Tan, and S. Y. Wang, “Linewidth narrowed vertical-cavity surface-emitting lasers for millimeter-wave generation by optical heterodyning,” IEEE J. Quantum Electron. 3, 405-408 (1997). [CrossRef]
  11. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343-346(2005). [CrossRef]
  12. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004). [CrossRef]
  13. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20, 1636-1638 (2008). [CrossRef]
  14. D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21, 674-679(1985). [CrossRef]
  15. J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, and J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982-990 (1990). [CrossRef]
  16. W. A. Hamel, M. P. van Exter, and J. P. Woerdman, “Coherence properties of a semiconductor laser with feedback from a distant reflector: experiment and theory,” IEEE J. Quantum Electron. 28, 1459-1469 (1992). [CrossRef]
  17. M. Peil, I. Fischer, and W. Elsässer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73, 023805 (2006). [CrossRef]
  18. A. Hohl, H. J. C. van der Linden, and R. Roy, “Determinism and stochasticity of power-dropout events in semiconductor lasers with optical feedback,” Opt. Lett. 20, 2396-1398(1995). [CrossRef] [PubMed]
  19. T. Heil, I. Fischer, and W. Elsaesser, “Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback,” Phys. Rev. A 58, R2672-R2675(1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited