OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 5 — Feb. 10, 2009
  • pp: 990–997

Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy

Xiutao Lou, Gabriel Somesfalean, Bin Chen, and Zhiguo Zhang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 5, pp. 990-997 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (933 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity ( R 2 = 0.999 ). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

© 2009 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:

Original Manuscript: August 25, 2008
Revised Manuscript: January 6, 2009
Manuscript Accepted: January 9, 2009
Published: February 6, 2009

Xiutao Lou, Gabriel Somesfalean, Bin Chen, and Zhiguo Zhang, "Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy," Appl. Opt. 48, 990-997 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E 19, 401-412 (1986). [CrossRef]
  2. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003). [CrossRef]
  3. R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006). [CrossRef]
  4. B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007). [CrossRef]
  5. W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996). [CrossRef] [PubMed]
  6. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta, Part A 54, 197-236 (1998). [CrossRef]
  7. M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987). [CrossRef]
  8. H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, and R. J. Menna, “Design of an open-path near-infrared diode-laser sensor: application to oxygen, water, and carbon-dioxide vapor detection,” Appl. Opt. 33, 7059-7066 (1994). [CrossRef] [PubMed]
  9. Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008). [CrossRef]
  10. D. M. Bruce and D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327-1332 (1990). [CrossRef] [PubMed]
  11. Q. V. Nguyen, R. W. Dibble, and T. Day, “High-resolution oxygen absorption-spectrum obtained with an external-cavity continuously tunable diode-laser,” Opt. Lett. 19, 2134-2136 (1994). [CrossRef] [PubMed]
  12. C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996). [CrossRef]
  13. V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997). [CrossRef]
  14. H. P. Zappe, M. Hess, M. Moser, R. Hovel, K. Gulden, H. P. Gauggel, and F. M. di Sopra, “Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection,” Appl. Opt. 39, 2475-2479 (2000). [CrossRef]
  15. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).
  16. J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001). [CrossRef]
  17. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005). [CrossRef]
  18. X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008). [CrossRef]
  19. X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47, 2392-2398 (2008). [CrossRef] [PubMed]
  20. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992). [CrossRef] [PubMed]
  21. J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003). [CrossRef]
  22. J. Sandsten, P. Wiebring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6, 92-103 (2000). [CrossRef] [PubMed]
  23. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  24. C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006). [CrossRef]
  25. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002). [CrossRef]
  26. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002). [CrossRef]
  27. P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited