OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1016–1029

Micromachined silicon grisms for infrared optics

Douglas J. Mar, Jasmina P. Marsh, Casey P. Deen, Hao Ling, Hosung Choo, and Daniel T. Jaffe  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1016-1029 (2009)

View Full Text Article

Acrobat PDF (1385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the successful fabrication of large format (approximately 50 mm × 50 mm) gratings in monolithic silicon for use as high-efficiency grisms at infrared wavelengths. The substrates for the grisms were thick (8-16 mm) disks of precisely oriented single-crystal silicon (refractive index, n ~ 3.42). We used microlithography and chemical wet etching techniques to produce the diffraction gratings on one side of these substrates. These techniques permitted the manufacture of coarse grooves (as few as 7 grooves/mm) with precise control of the blaze angle and groove profile and resulted in excellent groove surface quality. Profilometric measurements of the groove structure of the gratings confirm that the physical dimensions of the final devices closely match their design values. Optical performance of these devices exceeds the specifications required for diffraction-limited performance (RMS wave surface error <λ/20) in the near- and mid-infrared (1-40 μm). Peak diffraction efficiencies measured in the reflection range from 70-95% of the theoretical maximum. Tests of our grisms in the near infrared indicate transmission efficiencies of 30-48% uncorrected for Fresnel losses and confirm excellent performance. In infrared wavelength regions where silicon transmits well, the blaze control and high index permit high-resolution, high-order dispersion in a compact space. The first application of these grisms is to provide FORCAST, a mid-infrared camera on NASA's airborne observatory, with a moderate resolution (R=100-1000) spectroscopic capability.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(300.6340) Spectroscopy : Spectroscopy, infrared
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Diffraction and Gratings

Original Manuscript: September 26, 2008
Revised Manuscript: January 6, 2009
Manuscript Accepted: January 6, 2009
Published: February 11, 2009

Douglas J. Mar, Jasmina P. Marsh, Casey P. Deen, Hao Ling, Hosung Choo, and Daniel T. Jaffe, "Micromachined silicon grisms for infrared optics," Appl. Opt. 48, 1016-1029 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. F. Carpenter, “Nebular spectrograph of a new type,” Astron. J. 68, 275 (1963). [CrossRef]
  2. M. Nevière, “Electromagnetic study of transmission gratings,” Appl. Opt. 30, 4540-4547 (1991).
  3. Carl Zeiss, “Grating Catalog,” available at http://www.zeiss.de, 2004.
  4. Newport Corporation, Diffraction Gratings Catalog, available from http://www.newport.com, 2005.
  5. M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94-106 (2003). [CrossRef]
  6. P. J. Kuzmenko, “Prospects for machined immersion gratings in the near infrared and visible,” Proc. SPIE 6273, 62733S(2006).
  7. H. U. Kaeufl, K. Kuehl, and S. Vogel, “Grisms from germanium/silicon for astronomical instruments,” Proc SPIE 3354, 151-158 (1998). [CrossRef]
  8. N. Kobayashi, A. T. Tokunaga, H. Terada, M. Goto, M. Weber, R. Potter, P. M. Onaka, G. K. Ching, T. T. Young, K. Fletcher, D. Neil, L. Robertson, D. Cook, M. Imanishi, and D. W. Warren, “IRCS: infrared camera and spectrograph for the Subaru Telescope,” Proc. SPIE 4008, 1056-1066 (2000). [CrossRef]
  9. K. Matthews and B. T. Soifer, “The near infrared camera on the W. M. Keck telescope,” Exp. Astron. 3, 77-84 (1994). [CrossRef]
  10. W. Freudling, “The NICMOS grism mode,” in The 1997 HST Calibration Workshop with a New Generation of Instruments, S. Casertano, R. Jedrzejewski, C. D. Keyes, and M. Stevens, eds. (Space Telescope Science Institute, 1997), pp. 207-216.
  11. H.-G. Reimann, U. Weinert, and S. Wagner, “TIMMI2: a new MIR multimode instrument for ESO,” Proc. SPIE 3354, 865-876 (1998). [CrossRef]
  12. L. K. Deutsch, J. L. Hora, J. D. Adams, and M. Kassis, “MIRSI: a mid-infrared spectrometer and imager,” Proc. SPIE 4841, 106-116 (2003). [CrossRef]
  13. P. O. Lagage, J. W. Pel, M. Authier, J. Belorgey, A. Claret, C. Doucet, D. Dubreuil, G. Durand, G. E. Elswijk, P. Giradot, H. U. Käufl, G. Kroes, M. Lortholary, Y. Lussignol, M. Marchesi, E. Pantin, R. Peletier, J.-F. Pirard, J. Pragt, Y. Rio, T. Schoenmaker, R. Siebenmorgen, A. Silber, A. Smette, M. Sterzik, and C. Veyssiere, “Successful commissioning of VISIR: the mid-infrared VLT instrument,” The Messenger 117, 12-16 (2004).
  14. P. Philippe, S. Valette, O. Mata Mendez, and D. Maystre, “Wavelength demultiplexer using echelette gratings on silicon substrate,” Appl. Opt. 24, 1006-1011 (1985).
  15. F. Zhao, J. Qiao, X. Deng, J. Zou, B. Guo, R. Collins, V. Villavicencio, K. K. Chang, J. W. Horwitz, B. Morey, and R. T. Chen, “Reliable grating-based wavelength division (de)multiplexers for optical networks,” Opt. Eng. 40, 1204-1211 (2001). [CrossRef]
  16. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23, 1152-1154(1998). [CrossRef]
  17. C. Pitris, B. E. Bouma, M. Shiskov, and G. J. Tearney, “A grism-based probe for spectrally encoded confocal microscopy,” Opt. Express 11, 120-124 (2003).
  18. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29, 1414-1415 (1993). [CrossRef]
  19. S. Kane and J. Squier, “Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped pulse amplification,” J. Opt. Sci. Am. B 14, 661-665 (1997). [CrossRef]
  20. J. P. Marsh, D. J. Mar, and D. T. Jaffe, “Production and evaluation of silicon immersion gratings for infrared astronomy,” Appl. Opt. 46, 3400-3416 (2007). [CrossRef]
  21. H. Y. Fan and M. Becker, “Infra-red absorption of silicon,” Phys. Rev. 78, 178 (1950). [CrossRef]
  22. W. Spitzer and H. Y. Fan, “Infrared absorption in n-type silicon,” Phys. Rev. 108, 268 (1957). [CrossRef]
  23. W. R. Runyan, Silicon Semiconductor Technology (McGraw-Hill, 1965).
  24. D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free carrier absorption in silicon,” IEEE J. Solid-State Circuits 13, 180-187 (1978). [CrossRef]
  25. P. D. Ownby and J. E. Peters, “Thermal analysis of the far infrared transmission of silicon and germanium,” J. Min. Met. B. 35, 225-241 (1999).
  26. J. E. Peters and P. D. Ownby, complete silicon and germanium far infrared spectroscopy data, Missouri University of Science & Technology, Rolla, Mo. 65401, USA, August 2008 (private communication).
  27. J. E. Peters, P. D. Ownby, C. R. Poznich, and J. C. Richter, “Far infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 3424, 98-105 (1998). [CrossRef]
  28. J. E. Peters and P. D. Ownby, “Far infrared transmission of diamond structure semiconductor single crystals--silicon and germanium,” Opt. Eng. 38, 1924-1931 (1999). [CrossRef]
  29. R. J. Collins and H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93, 674-678 (1954). [CrossRef]
  30. F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc. 73, 265-272 (1959).
  31. W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101, 1264-1268 (1956). [CrossRef]
  32. H. J. Hrostowski and R. H. Kaiser, “Infrared absorption of oxygen in silicon,” Phys. Rev. 107, 966-972 (1957). [CrossRef]
  33. F. M. Livingston, S. Messoloras, R. C. Newman, B. C. Pike, R. J. Stewart, M. J. Binns, W. P. Brown, and J. G. Wilkes, “An infrared and neutron scattering analysis of the precipitation of oxygen in dislocation-free silicon,” J. Phys. C 17, 6253-6276 (1984). [CrossRef]
  34. R. C. Lord, “Far infrared transmission of silicon and germanium,” Phys. Rev. 85, 140-141 (1952). [CrossRef]
  35. W. F. Passchier, D. D. Honijk, M. Mandel, and M. N. Afsar, “A new method for the determination of complex refractive index spectra of transparent solids in the far-infrared spectral region: results of pure silicon and crystal quartz,” J. Phys. D 10, 509-517 (1977). [CrossRef]
  36. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids,” Appl. Opt. 12, 398-406 (1973). [CrossRef]
  37. W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151-1155 (1955). [CrossRef]
  38. G. G. MacFarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Fine structure in the absorption-edge spectrum of Si,” Phys. Rev. 111, 1245-1254 (1958). [CrossRef]
  39. T. A. Kwa, P. J. French, R. F. Wolffenbuttel, P. M. Sarro, L. Hellemans, and J. Snauwaert, “Anisotropically etched silicon mirrors for optical sensor applications,” J. Electrochem. Soc. 142, 1226-1233 (1995). [CrossRef]
  40. C. Merveille, “Surface quality of {111} side-walls in KOH-etched cavities,” Sens. Actuators A, Phys. 60, 244-248 (1997). [CrossRef]
  41. P. J. Kuzmenko and D. R. Ciarlo, “Improving the optical performance of etched silicon gratings,” Proc. SPIE 3354, 357-367 (1998). [CrossRef]
  42. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006). [CrossRef]
  43. K. H. Hinkle, R. Drake, and T. A. Elis, “Cryogenic single-crystal silicon optics,” Proc. SPIE 2198, 516-524 (1994).
  44. L.F.Thompson, C.G.Willson, and M.J.Bowden, eds., Introduction to Microlithography, 2nd ed. (Oxford University, 1994).
  45. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions--part I. Orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137, 3612-3626 (1990). [CrossRef]
  46. W. T. Tsang and S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163-2166 (1975). [CrossRef]
  47. G. Wiedemann and D. E. Jennings, “Immersion grating for infrared astronomy,” Appl. Opt. 32, 1176-1178 (1993).
  48. P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE 2266, 566-577 (1994). [CrossRef]
  49. U. U. Graf, D. T. Jaffe, E. J. Kim, J. H. Lacy, H. Ling, J. T. Moore, and G. Rebeiz, “Fabrication and evaluation of an etched infrared diffraction grating,” Appl. Opt. 33, 96-102 (1994).
  50. L. D. Keller, D. T. Jaffe, O. A. Ershov, T. Benedict, and U. U. Graf, “Fabrication and testing of chemically micromachined silicon echelle gratings,” Appl. Opt. 39, 1094-1105 (2000). [CrossRef]
  51. F. Vitali, E. Cianci, D. Lorenzetti, V. Foglietti, A. Notargiacomo, E. Giovine, and E. Oliva, “Silicon grisms for high-resolution spectroscopy in the near infrared,” Proc. SPIE 4008, 1383-1394 (2000). [CrossRef]
  52. O. A. Ershov, D. T. Jaffe, J. P. Marsh, and L. D. Keller, “Production of high-order micromachined silicon echelles on optically flat substrates,” Proc. SPIE 4440, 301-308 (2001). [CrossRef]
  53. F. Vitali, E. Cianci, V. Foglietti, and D. Lorenzetti, “Fabrication of silicon grisms,” Proc. SPIE 4842, 274-281 (2003). [CrossRef]
  54. O. A. Ershov, J. P. Marsh, K. N. Allers, and D. T. Jaffe, “Infrared grisms using anisotropic etching of silicon to produce a highly asymmetric groove profile,” Proc. SPIE 4850, 805-812 (2003). [CrossRef]
  55. J. Ge, D. L. McDavitt, S. Miller, J. L. Bernecker, A. Chakraborty, and J. Wang, “Breakthroughs in silicon grism and immersion grating technology at Penn State,” Proc SPIE 4841, 1006-1015 (2003). [CrossRef]
  56. D. McDavitt, J. Ge, S. Miller, and J. Wang, “Silicon immersion gratings for very high resolution infrared spectroscopy,” Proc. SPIE 5494, 536-544 (2004). [CrossRef]
  57. S. S. Tan, M. L. Reed, H. Han, and R. Boudreau, “Mechanisms of etch hillock formation,” J. Microelectromech. Syst. 5, 66-72 (1996). [CrossRef]
  58. G. Nanz and L. E. Camilletti, “Modeling of chemical-mechanical polishing: a review,” IEEE Trans. Semicond. Manuf. 8, 382-389 (1995). [CrossRef]
  59. D. T. Jaffe, L. D. Keller, and O. A. Ershov, “Micromachined silicon diffraction gratings for infrared spectroscopy,” Proc. SPIE 3354, 201-212 (1998). [CrossRef]
  60. D. J. Mar, J. P. Marsh, D. T. Jaffe, L. D. Keller, and K. A. Ennico, “Performance of large chemically etched silicon grisms for infrared spectroscopy,” Proc. SPIE 6269, 62695R(2006). [CrossRef]
  61. S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S. N. Port, and D. J. Schiffrin, “Inhibition of pyramid formation in the etching of Si p(100) in aqueous potassium hydroxide-isopropanol,” J. Micromech. Microeng. 5, 209-218 (1995). [CrossRef]
  62. J. P. Marsh, O. A. Ershov, and D. T. Jaffe, “Silicon grisms and immersion gratings produced by anisotropic etching: testing and analysis,” Proc. SPIE 4850, 797-804 (2003). [CrossRef]
  63. S. C. Barden, J. A. Arns, and W. S. Colburn, “Volume-phase holographic gratings and their potential for astronomical applications,” Proc. SPIE 3355, 866-876 (1998). [CrossRef]
  64. J. Moore, H. Ling, U. U. Graf, and D. T. Jaffe, “A boundary integral approach to the scattering from periodic gratings,” Microw. Opt. Technol. Lett. 5, 480-483 (1992). [CrossRef]
  65. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1980).
  66. L. D. Keller, T. L. Herter, G. J. Stacey, G. E. Gull, B. Pirger, J. Schoenwald, H. Bowmann, and T. Nikola, “FORCAST: a facility 5-40 micron camera for SOFIA,” Proc. SPIE 4014, 86-97 (2000). [CrossRef]
  67. L. D. Keller, T. L. Herter, G. J. Stacey, G. E. Gull, J. Schoenwald, B. Pirger, and T. Nikola, “FORCAST: the faint object infrared camera for the SOFIA telescope,” Proc. SPIE 4857, 29-36 (2003). [CrossRef]
  68. E. F. Erickson and J. A. Davidson, “SOFIA: the future of airborne astronomy,” Astron. Soc. Pac. Conf. Ser. 73, 707-773(1995).
  69. K. A. Ennico, L. D. Keller, D. J. Mar, T. L. Herter, D. T. Jaffe, J. D. Adams, and T. P. Greene, “Grism performance for mid-IR (5-40 micron) spectroscopy,” Proc. SPIE 6269, 62691Q(2006). [CrossRef]
  70. C. P. Deen, L. Keller, K. A. Ennico, D. T. Jaffe, J. P. Marsh, J. D. Adams, N. Chitrakar, T. P. Greene, D. J. Mar, and T. Herter, “A silicon and KRS-5 grism suite for FORCAST on SOFIA,” Proc. SPIE 7014, 70142C (2008). [CrossRef]
  71. J. T. Rayner, “Evaluation of a solid KRS-5 grism for infrared astronomy,” Proc. SPIE 3354, 289-294 (1998). [CrossRef]
  72. N. Ebizuka, M. Iye, T. Sasaki, and M. Wakaki, “Development of high dispersion grisms and immersion gratings for spectrographs of Subaru Telescope,” Proc. SPIE 3355, 409-416(1998).
  73. S. D. Lord, “A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation,” 103957” (NASA, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited