OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1084–1090

Correction of aberration in holographic optical tweezers using a Shack–Hartmann sensor

Carol López-Quesada, Jordi Andilla, and Estela Martín-Badosa  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1084-1090 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical aberration due to the nonflatness of spatial light modulators used in holographic optical tweezers significantly deteriorates the quality of the trap and may easily prevent stable trapping of particles. We use a Shack–Hartmann sensor to measure the distorted wavefront at the modulator plane; the conjugate of this wavefront is then added to the holograms written into the display to counteract its own curvature and thus compensate the optical aberration of the system. For a Holoeye LC-R 2500 reflective device, flatness is improved from 0.8 λ to λ / 16 ( λ = 532 nm ), leading to a diffraction-limited spot at the focal plane of the microscope objective, which makes stable trapping possible. This process could be fully automated in a closed-loop configuration and would eventually allow other sources of aberration in the optical setup to be corrected for.

© 2009 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(230.6120) Optical devices : Spatial light modulators
(090.1995) Holography : Digital holography
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: September 19, 2008
Revised Manuscript: December 30, 2008
Manuscript Accepted: January 13, 2009
Published: February 13, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Carol López-Quesada, Jordi Andilla, and Estela Martín-Badosa, "Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor," Appl. Opt. 48, 1084-1090 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986), [CrossRef] [PubMed]
  2. M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201-215 (2003). [CrossRef]
  3. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999). [CrossRef]
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000). [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001). [CrossRef]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002). [CrossRef]
  7. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  8. O. Muller, M. Schliwa, and H. Felgner, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977-982 (1995). [CrossRef] [PubMed]
  9. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507(2002). [CrossRef] [PubMed]
  10. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003). [CrossRef]
  11. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004). [CrossRef]
  12. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144-1149 (2004). [CrossRef] [PubMed]
  13. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45, 3425-3429(2006). [CrossRef] [PubMed]
  14. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007). [CrossRef] [PubMed]
  15. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517-1520 (1997). [CrossRef] [PubMed]
  16. J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004). [CrossRef]
  17. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013-8018 (2006). [CrossRef] [PubMed]
  18. J. D. Schmidt, M. E. Goda, and B. D. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423-2433 (2007). [CrossRef] [PubMed]
  19. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  20. K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999). [CrossRef]
  21. J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004). [CrossRef]
  22. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667-5679 (2007). [CrossRef] [PubMed]
  23. N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007). [CrossRef]
  24. http://www.bnonlinear.com/.
  25. X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004). [CrossRef]
  26. X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, “Finite-difference time-domain simulation of a liquid-crystal optical phased array,” J. Opt. Soc. Am. A 22, 346-354 (2005). [CrossRef]
  27. http://www.hanaoh.com/.
  28. http://www.holoeye.com/.
  29. M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004). [CrossRef]
  30. K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169-4174(2006). [CrossRef] [PubMed]
  31. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007). [CrossRef]
  32. E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997). [CrossRef]
  33. J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008). [CrossRef]
  34. http://www.imagine-optic.com/.
  35. K. von Bieren, “Lens design for optical Fourier transform systems,” Appl. Opt. 10, 2739-2742 (1971). [CrossRef] [PubMed]
  36. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996). [CrossRef]
  37. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited