OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1104–1113

Compact infrared pinhole fisheye for wide field applications

Guillaume Druart, Nicolas Guérineau, Jean Taboury, Sylvain Rommeluère, Riad Haïdar, Jérôme Primot, Manuel Fendler, and Jean-Charles Cigna  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1104-1113 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performances of a compact infrared optical system using advanced pinhole optics for wide field applications are given. This concept is adapted from the classical Tisse design in order to fit with infrared issues. Despite a low light gathering efficiency and a low resolution in comparison with classical lenses, pinhole imagery provides a long depth of field and a wide angular field of view. Moreover, by using a simple lens that compresses the field of view, the angular acceptance of this pinhole camera can be drastically widened to a value around 180 ° . This infrared compact system is named pinhole fisheye since it is based on the field lens of a classical fisheye system.

© 2009 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.0110) Imaging systems : Imaging systems
(110.2970) Imaging systems : Image detection systems
(110.3000) Imaging systems : Image quality assessment
(130.0130) Integrated optics : Integrated optics
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: November 14, 2008
Revised Manuscript: January 22, 2009
Manuscript Accepted: January 27, 2009
Published: February 13, 2009

Guillaume Druart, Nicolas Guérineau, Jean Taboury, Sylvain Rommeluère, Riad Haïdar, Jérôme Primot, Manuel Fendler, and Jean-Charles Cigna, "Compact infrared pinhole fisheye for wide field applications," Appl. Opt. 48, 1104-1113 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Duparré, P. Dannberg, P. Shreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303-4310 (2004). [CrossRef] [PubMed]
  2. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949-2956 (2005). [CrossRef] [PubMed]
  3. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Express 13, 889-903 (2005). [CrossRef] [PubMed]
  4. V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006). [CrossRef]
  5. G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).
  6. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO) concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001). [CrossRef]
  7. K. Kubala, E. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102-2108 (2003). [CrossRef] [PubMed]
  8. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463-471 (2007). [CrossRef] [PubMed]
  9. Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008). [CrossRef]
  10. G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366-368 (2008). [CrossRef] [PubMed]
  11. Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “AXICON--the most important optical element,” Opt. Photon. News 16(4), 34-39 (2005). [CrossRef]
  12. K. Sayanagui, “Pinhole imagery,” J. Opt. Soc. Am. 57, 1091-1099 (1967).
  13. R. E. Swing and D. P. Rooney, “General transfer function for the pinhole camera,” J. Opt. Soc. Am. 58, 629-635 (1968). [CrossRef]
  14. H. B. Edwards and W. P. Chu, “Graphic design of pinhole cameras,” Appl. Opt. 18, 262-263 (1979). [CrossRef] [PubMed]
  15. K. D. Mielenz, “On the diffraction limit for lensless imaging,” J. Res. Natl. Inst. Stand. Technol. 104, 479-485(1999).
  16. M. Young, “Pinhole optics,” Appl. Opt. 10, 2763-2767 (1971). [PubMed]
  17. P. A. Newmann and V. E. Rible, “Pinhole array camera for integrated circuits,” Appl. Opt. 5, 1225-1228 (1966). [CrossRef]
  18. C.-L. Tisse, “Low-cost miniature wide-angle imaging for self-motion estimation,” Opt. Express 13, 6061-6072 (2005). [CrossRef] [PubMed]
  19. C.-L. Tisse and H. Durrant-Whyte, “Hemispherical eye sensor in micro aerial vehicles using advanced pinhole imaging system,” in Proceeding of IEEE Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 634-640.
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), p. 30.
  21. G. Druart, N. Guérineau, R. Haïdar, J. Primot, Pierre Chavel, and J. Taboury, “Nonparaxial analysis of continuous self-imaging gratings in oblique illumination,” J. Opt. Soc. Am. A 24, 3379-3387 (2007). [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, p. 203.
  23. E. W. H. Selwyn, “The pin-hole camera,” Photograph. J. B 90, 47-52 (1949).
  24. S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965-4971 (2008). [CrossRef] [PubMed]
  25. R. W. Wood, Physical Optics (Dover, 1967), pp. 66-69.
  26. J. M. Franke, “Field-widened pinhole camera,” Appl. Opt. 18, 2913-2914 (1979). [CrossRef] [PubMed]
  27. T. Hsu, “Reflective wide-angle pinhole camera,” Appl. Opt. 21, 2303-2304 (1982). [CrossRef] [PubMed]
  28. J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360 (2000). [CrossRef]
  29. H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, “Optical design of a panoramic, wide spectral band, infrared fisheye lens,” Proc. SPIE 6342, 63421P (2007). [CrossRef]
  30. S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. de Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, “Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer,” Appl. Opt. 46, 1379-1384 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited