OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1119–1127

Fast spectrometer for ground-based observations of OH rotational temperature

Hidehiko Suzuki, Makoto Taguchi, Yoshikazu Kanai, and Norihide Takeyama  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1119-1127 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sensitive spectrometer has been developed for observing the hydroxyl airglow in the polar region. This spectrometer is designed to acquire spectra of the Meinel OH 8-4 band, which has the advantage of being relatively free of contamination from auroral emissions. The spectrometer consists of a fast optical system, a transmission plane grating, and a cooled CCD image sensor. The spectrometer can acquire spectra between 900 and 987 nm , from which the OH rotational temperature can be derived with an accuracy of ± 1.9 to 2.5 K for a 1 min exposure. The spectrometer specifications and initial measurement results for the OH rotational temperature and intensity at Syowa Station ( 69.0 ° S , 39.6 ° E ) in Antarctica are presented.

© 2009 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(040.1520) Detectors : CCD, charge-coupled device
(050.1950) Diffraction and gratings : Diffraction gratings
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 9, 2008
Revised Manuscript: January 22, 2009
Manuscript Accepted: January 29, 2009
Published: February 17, 2009

Hidehiko Suzuki, Makoto Taguchi, Yoshikazu Kanai, and Norihide Takeyama, "Fast spectrometer for ground-based observations of OH rotational temperature," Appl. Opt. 48, 1119-1127 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555-564 (1950). [CrossRef]
  2. D. J. Baker and A. T. Stair, Jr., “Rocket measurements of the altitude distribution of the hydroxyl emission,” Phys. Scr. 37, 611-622 (1988). [CrossRef]
  3. D. R. Bates and M. Nicolet, “The photochemistry of atmospheric water vapor,” J. Geophys. Res. 55, 301-327 (1950). [CrossRef]
  4. W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993). [CrossRef]
  5. G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972). [CrossRef]
  6. V. I. Krassovsky, “Infrasonic variations of OH emission in the upper atmosphere,” Ann. Geophys. (C.N.R.S.) 28, 739-746 (1972).
  7. H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974). [CrossRef]
  8. I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995). [CrossRef]
  9. K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).
  10. W. J. R. French and G. B. Burns, “The influence of large-scale oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica,” J. Atmos. Sol.-Terr. Phys. 66, 493-506 (2004). [CrossRef]
  11. L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983). [CrossRef]
  12. A. Vallance Jones, “Auroral spectroscopy,” Space Sci. Rev. 11, 776-826 (1971).
  13. H. Suzuki, “Atmospheric gravity waves identified by ground-based observations of the intensity and rotational temperature of OH airglow,” Polar Sci. 2(1), 1-8 (2008). [CrossRef]
  14. D. J. R. Kendall and T. A. Clark, “The pure rotational atmospheric lines of hydroxyl,” J. Quant. Spectrosc. Radiat. Transfer 21, 511-526 (1979). [CrossRef]
  15. F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150-188 (1974). [CrossRef]
  16. S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986). [CrossRef]
  17. L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982). [CrossRef]
  18. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002). [CrossRef]
  19. P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited