OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1143–1152

Three filters for visualization of phase objects with large variations of phase gradients

Arkadiusz Sagan, Tomasz J. Antosiewicz, and Tomasz Szoplik  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1143-1152 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose three amplitude filters for visualization of phase objects. They interact with the spectra of pure-phase objects in the frequency plane and are based on tangent and error functions as well as antisymmetric combination of square roots. The error function is a normalized form of the Gaussian function. The antisymmetric square-root filter is composed of two square-root filters to widen its spatial frequency spectral range. Their advantage over other known amplitude frequency-domain filters, such as linear or square-root graded ones, is that they allow high-contrast visualization of objects with large variations of phase gradients.

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: November 10, 2008
Revised Manuscript: January 7, 2009
Manuscript Accepted: January 23, 2009
Published: February 17, 2009

Arkadiusz Sagan, Tomasz J. Antosiewicz, and Tomasz Szoplik, "Three filters for visualization of phase objects with large variations of phase gradients," Appl. Opt. 48, 1143-1152 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Sprague and B. J. Thompson, “Quantitative visualization of large variation phase objects,” Appl. Opt. 11, 1469-1479 (1972). [CrossRef] [PubMed]
  2. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, and B. J. Thomson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE Press, 1989). [CrossRef]
  3. M. Pluta, Advanced Light Microscopy Vol. 2--Specialized Methods (Polish Scientific Publishers, 1989).
  4. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001). [CrossRef]
  5. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955). [CrossRef] [PubMed]
  6. L. Joannes, F. Dubois, and J. Legros, “Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle,” Appl. Opt. 42, 5046-5053(2003). [CrossRef] [PubMed]
  7. B. Zakharin and J. Stricker, “Schlieren systems with coherent illumination for quantitative measurements,” Appl. Opt. 43, 4786-4795 (2004). [CrossRef] [PubMed]
  8. T.-C. Poon and K. B. Doh, “On the theory of optical Hilbert transform for incoherent objects,” Opt. Express 15, 3006-3011(2007). [CrossRef] [PubMed]
  9. R. Hoffman and L. Gross, “Modulation contrast microscope,” Appl. Opt. 14, 1169-1176 (1975). [CrossRef] [PubMed]
  10. B. A. Horwitz, “Phase image differentiation with linear intensity output,” Appl. Opt. 17, 181-186 (1978). [CrossRef] [PubMed]
  11. H. Kasprzak, “Differentiation of a noninteger order and its optical implementation,” Appl. Opt. 21, 3287-3291(1982). [CrossRef] [PubMed]
  12. J. Lancis, T. Szoplik, E. Tajahuerce, V. Climent, and M. Fernández-Alonso, “Fractional derivative Fourier plane filter for phase-change visualization,” Appl. Opt. 36, 7461-7464(1997). [CrossRef]
  13. E. Tajahuerce, T. Szoplik, J. Lancis, V. Climent, and M. Fernandez, “Phase-object fractional differentiation using Fourier plane filters,” Pure Appl. Opt. 6, 481-490(1997). [CrossRef]
  14. T. Szoplik, V. Climent, E. Tajahuerce, J. Lancis, and M. Fernández-Alonso, “Phase-change visualization in two-dimensional phase objects with a semiderivative real filter,” Appl. Opt. 37, 5472-5478 (1998). [CrossRef]
  15. A. Sagan, S. Nowicki, R. Buczynski, M. Kowalczyk, and T. Szoplik, “Imaging phase objects with square-root, Foucault, and Hoffman real filters: a comparison,” Appl. Opt. 42, 5816-5824 (2003). [CrossRef] [PubMed]
  16. B. Rosa, A. Sagan, K. E. Haman, and T. Szoplik, “Visualization of small scale density fluctuations in the atmosphere using the semiderivative real filter,” Proc. SPIE 5237, 228-237(2004). [CrossRef]
  17. H. Furuhashi, K. Matsuda, and C. P. Grover, “Visualization of phase objects by use of a differentiation Filter,” Appl. Opt. 42, 218-226 (2003). [CrossRef] [PubMed]
  18. H. Furuhashi, R. Sugiyama, Y. Uchida, K. Matsuda, and C. P. Grover, “Optical differentiation phase measurement using the bias shifting method,” Opt. Rev. 12, 109-114(2005). [CrossRef]
  19. A. Sagan, M. Kowalczyk, and T. Szoplik, “Optimized visualization of phase objects with semiderivative real filters,” Proc. SPIE 5182, 103-111 (2004). [CrossRef]
  20. R. Kasztelanic, W. Grabowski, A. Sagan, J. Liu, R. Buczyński, A. Waddie, and M. Taghizadeh, “Semi-derivative real filter for quality measurement of microlenses array,” Proc. SPIE 6189, 618916 (2006). [CrossRef]
  21. F. Henault, “Wavefront sensor based on varying transmission filters: theory and expected performance,” J. Mod. Opt. 52, 1917-1931 (2005). [CrossRef]
  22. J. A. Davis, D. A. Smith, D. E. McNamara, D. M. Cottrell, and J. Campos, “Fractional derivatives-analysis and experimental implementation,” Appl. Opt. 40, 5943-5948(2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited