OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1158–1167

Iterative least square phase-measuring method that tolerates extended finite bandwidth illumination

Florin Munteanu and Joanna Schmit  »View Author Affiliations


Applied Optics, Vol. 48, Issue 6, pp. 1158-1167 (2009)
http://dx.doi.org/10.1364/AO.48.001158


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Iterative least square phase-measuring techniques address the phase-shifting interferometry issue of sensitivity to vibrations and scanner nonlinearity. In these techniques the wavefront phase and phase steps are determined simultaneously from a single set of phase-shifted fringe frames where the phase shift does not need to have a nominal value or be a priori precisely known. This method is commonly used in laser interferometers in which the contrast of fringes is constant between frames and across the field. We present step-by-step modifications to the basic iterative least square method. These modifications allow for vibration insensitive measurements in an interferometric system in which fringe contrast varies across a single frame, as well as from frame to frame, due to the limited bandwidth light source and the nonzero numerical aperture of the objective. We demonstrate the efficiency of the new algorithm with experimental data, and we analyze theoretically the degree of contrast variation that this new algorithm can tolerate.

© 2009 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(180.3170) Microscopy : Interference microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 10, 2008
Revised Manuscript: January 15, 2009
Manuscript Accepted: January 23, 2009
Published: February 19, 2009

Citation
Florin Munteanu and Joanna Schmit, "Iterative least square phase-measuring method that tolerates extended finite bandwidth illumination," Appl. Opt. 48, 1158-1167 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-6-1158


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bruning, D. H. Herriot, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974). [CrossRef] [PubMed]
  2. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Technique, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), Chap. 4, pp. 94-140.
  3. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics XXVIII, E. Wolf, ed. (Elsevier, 1990), Chap. 4, pp. 271-359. [CrossRef]
  4. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calulation algorithm,” Appl. Opt. 26, 2504-2505 (1987). [CrossRef] [PubMed]
  5. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase shifting interferometry,” Appl. Opt. 34, 3610-3619 (1995). [CrossRef] [PubMed]
  6. J. Schmit and K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642-5649(1996). [CrossRef] [PubMed]
  7. P. J. de Groot “Derivation of algorithms for phase-shifting interferometry using concept of a data-sampling window,” Appl. Opt. 34, 4723-4730 (1995). [CrossRef]
  8. D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36, 8098-8115(1997). [CrossRef]
  9. P. J. de Groot and L. Deck, “Numerical simulations of vibration in phase-shifting interferometry,” Appl. Opt. 35, 2172-2178 (1996). [CrossRef] [PubMed]
  10. M. Milman, “Optimization approach to the suppression of vibration errors in phase-shifting interferometry,” J. Opt. Soc. Am. A 19, 992-1004 (2002). [CrossRef]
  11. C. J. Morgan, “Least square estimation in phase measurement interferometry,” Opt. Lett. 7, 368-370 (1982). [CrossRef] [PubMed]
  12. J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350-352 (1984).
  13. G. Lai and T. Yatagai, “Generalized phase shifting interferometry,” J. Opt. Soc. Am. A 8, 822-827 (1991). [CrossRef]
  14. C. T. Farrell and M. A. Player, “Phase step measurement and variable step algorithms in phase-shifting interferometry,” Meas. Sci. Technol. 3, 953-958, (1992). [CrossRef]
  15. H. van Brug, “Phase-step calibration for phase-stepped interferometry,” Appl. Opt. 38, 3549-3555 (1999). [CrossRef]
  16. K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt. 40, 2886-2893 (2001). [CrossRef]
  17. C-S. Guo, Z-Y. Rong, J-L. He, H-T. Wang, L-Z. Cai, and Y-R. Wang, “Determination of global phase shifts between interferograms by use of an energy-minimum algorithm,” Appl. Opt. 42, 6514-6519 (2003). [CrossRef] [PubMed]
  18. K. Okada, A. Sato, and J. Tsujiuchi, “Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry,” Opt. Commun. 84, 118-124 (1991). [CrossRef]
  19. G-S. Han and S-W. Kim, “Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting,” Appl. Opt. 33, 7321-7325 (1994). [CrossRef] [PubMed]
  20. I.-B. Kong, and S.-W. Kim, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Opt. Eng. 34, 183-187 (1995). [CrossRef]
  21. S.-W. Kim, M.-G. Kang, and G.-S. Han, “Accelerated phase measuring algorithm of least squares for phase shifting interferometry,” Opt. Eng. 36, 3101-3106 (1997). [CrossRef]
  22. H. Huang, M. Itoh, T. Yatagai, “Phase retrieval of Phase Shifting interferometry with iterative least-squares fitting algorithm: experiments,” Opt. Rev. 6, 196-203 (1999). [CrossRef]
  23. C. Wei, M. Chen, and Z. Wang, “General phase-stepping algorithm with automatic calibration of phase steps,” Opt. Eng. 38, 1357-1360 (1999). [CrossRef]
  24. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808-1810 (2003). [CrossRef] [PubMed]
  25. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase shifted interferograms,” Opt. Lett. 29, 1671-1673 (2004). [CrossRef] [PubMed]
  26. H. Guo and M. Chen, “Least squares algorithm for phase-stepping interferometry with unknown relative step,” Appl. Opt. 44, 4854-4859 (2005). [CrossRef] [PubMed]
  27. H. Guo, M. Chen, and C. Wei, “New algorithm insensitive to both translational and tilt phase-shifting error for phase-shifting interferometry,” Proc. SPIE 4101, 254-262 (2000).
  28. J. Xu, Q. Xu, and L. Chai, “Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts,” Appl. Opt. 47, 480-485 (2008). [CrossRef] [PubMed]
  29. J. Xu, Q. Xu, and L. Chai, “An iterative algorithm for interferograms with random phase shifts and high-order harmonics,” J. Opt. A Pure Appl. Opt. 10, 095004 (2008). [CrossRef]
  30. F. Munteanu and J. Schmit, “Iterative algorithm for phase shifting interferometry with fine bandwidth illumination,” Proc. SPIE 7063, 70630L (2008). [CrossRef]
  31. A. Dubois, J. Selb, L. Vabre, and A.-C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2326-2331 (2000). [CrossRef]
  32. M. F. Küchel, “Some progress in phase measurement techniques” Fringe'97 in Akademie Verlag Series in Optical Metrology, W. Jüptner and W. Osten, eds. (1997), pp. 27-44.
  33. J. H. Brunning, H. Schreiber, “Phase shifting interferometry,” in Optical Shop Testing, 3rd ed., D. Malacara, ed. (Wiley-InterScience, 2007), pp. 547-666.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited