OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1218–1227

Low and optically thin cloud measurements using a Raman–Mie lidar

Yonghua Wu, Shuki Chaw, Barry Gross, Fred Moshary, and Sam Ahmed  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1218-1227 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the potential of measuring low-altitude optically thin clouds with a Raman-elastic lidar in the daytime. Optical depths of low clouds are derived by two separate methods from nitrogen Raman and elastic-scattering returns. By correcting for aerosol influences with the combined Raman–elastic returns, Mie retrievals of low-cloud optical depth can be dramatically improved and show good agreement with the direct Raman retrievals. Furthermore, a lidar ratio profile is mapped out and shown to be consistent with realistic water phase cloud models. The variability of lidar ratios allows us to explore the distribution of small droplets near the cloud perimeter.

© 2009 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 4, 2008
Revised Manuscript: December 5, 2008
Manuscript Accepted: January 27, 2009
Published: February 19, 2009

Yonghua Wu, Shuki Chaw, Barry Gross, Fred Moshary, and Sam Ahmed, "Low and optically thin cloud measurements using a Raman-Mie lidar," Appl. Opt. 48, 1218-1227 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. S. Bretherton, T. Uttal, C. W. Fairall, S. Yuter, R. Weller, D. Baumgardner, K. Comstock, R. Wood, and G. Raga, “The EPIC 2001 stratocumulus study,” Bull. Am. Meteorol. Soc. 85, 967-977 (2004). [CrossRef]
  2. J. Verlinde, J. Y. Harrington, G. M. McFarquhar, V. T. Yannuzzi, A. Avramov, S. Greenberg, N. Johnson, G. Zhang, M. R. Poellot, J. H. Mather, D. D. Turner, E. W. Eloranta, B. D. Zak, A. J. Prenni, J. S. Daniel, G. L. Kok, D. C. Tobin, R. Holz, K. Sassen, D. Spangenberg, P. Minnis, T. P. Tooman, M. D. Ivey, S. J. Richardson, C. P. Bahrmann, M. Shupe, P. J. DeMott, A. J. Heymsfield, and R. Schofield, “The mixed-phase arctic cloud experiment,” Bull. Am. Meteorol. Soc. 88, 205-221 (2007). [CrossRef]
  3. D. D. Turner, A. M. Vogelmann, R. T. Austin,J. C. Barnard, K. Cady-Pereira, J. C. Chiu, S. A. Clough, C. Flynn, M. M. Khaiyer, J. Liljegren, K. Johnson, B. Lin, C. Long, A. Marshak, S. Y. Matrosov, S. A. McFarlane, M. Miller, Q. Min, P. Minnis, W. O'Hirok, Z. Wang, and W. Wiscombe, “Optically thin liquid water clouds: their importance and our challenge,” Bull. Am. Meteorol. Soc. 88, 177-190 (2007). [CrossRef]
  4. Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. 102, 11207-11212 (2005). [CrossRef] [PubMed]
  5. S. E. Schwartz, Harshvardhan, and C. M. Benkovitz, “Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling,” Proc. Natl. Acad. Sci. 99, 1784-1789(2002). [CrossRef] [PubMed]
  6. B. A. Baum and S. Platnick, “Introduction to MODIS cloud products,” in Earth Science Satellite Remote Sensing, Vol. 1: Science and Instruments, J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy, and V. Salomonson, eds. (Springer-Verlag, 2006), pp 74-91. [CrossRef]
  7. S. A. Young, “Analysis of lidar backscatter profiles in optical thin clouds,” Appl. Opt. 34, 7019-7030 (1995). [CrossRef] [PubMed]
  8. D. N. Whiteman, K. D. Evans, B. Demoz, D. O'C Starr, E. W. Eloranta, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, and F. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie,” J. Geophys. Res. 106, 5211-5225 (2001). [CrossRef]
  9. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113-7131 (1992). [CrossRef] [PubMed]
  10. B. Cadet, V. Giraud, M. Haeffelin, P. Keckhut, A. Rechou, and S. Baldy, “Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods,” Appl. Opt. 44, 1726-1734 (2005). [CrossRef] [PubMed]
  11. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  12. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  13. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,”Opt. Lett. 15, 746-748 (1990). [CrossRef] [PubMed]
  14. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663-19672 (1998). [CrossRef]
  15. Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: an automated algorithm to retrieve the vertical structure of the atmosphere from single channel lidar data,” J. Atmos. Ocean. Technol. 24, 761-775 (2007). [CrossRef]
  16. K. J. Davis, N. Gamageb, C. R. Hagelbergc, C. Kiemled, D. H. Lenschowe, and P. P. Sullivane, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Ocean. Technol. 17, 1455-1468 (2000). [CrossRef]
  17. E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-778 (2004). [CrossRef]
  18. R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787-6796 (1983). [CrossRef]
  19. W. L. Eberhard, “CO2 lidar technique for observing characteristic drop size in water cloud,” IEEE Trans. Geosci. Remote Sens. 31 (1), 56 (1993). [CrossRef]
  20. E. W. Eloranta, “A practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464-2472 (1998). [CrossRef]
  21. U. Wandinger, “Multiple-scattering influence on extinction and backscatter coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417-427 (1998).
  22. R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45, 5984-5992 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited