OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 6 — Feb. 20, 2009
  • pp: 1237–1248

Development of temperature imaging using two-line atomic fluorescence

Paul R. Medwell, Qing N. Chan, Peter A. M. Kalt, Zeyad T. Alwahabi, Bassam B. Dally, and Graham J. Nathan  »View Author Affiliations

Applied Optics, Vol. 48, Issue 6, pp. 1237-1248 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work aims to advance understanding of the coupling between temperature and soot. The ability to image temperature using the two-line atomic fluorescence (TLAF) technique is demonstrated. Previous TLAF theory is extended from linear excitation into the nonlinear fluence regime. Nonlinear regime two-line atomic fluorescence (NTLAF) provides superior signal and reduces single-shot uncertainty from 250 K for conventional TLAF down to 100 K . NTLAF is shown to resolve the temperature profile across the stoichiometric envelope for hydrogen, ethylene, and natural gas flames, with deviation from thermocouple measurements not exceeding 100 K , and typically 30 K . Measurements in flames containing soot demonstrate good capacity of NTLAF to exclude interferences that hamper most two-dimensional thermometry techniques.

© 2009 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 5, 2008
Revised Manuscript: January 18, 2009
Manuscript Accepted: January 21, 2009
Published: February 20, 2009

Paul R. Medwell, Qing N. Chan, Peter A. M. Kalt, Zeyad T. Alwahabi, Bassam B. Dally, and Graham J. Nathan, "Development of temperature imaging using two-line atomic fluorescence," Appl. Opt. 48, 1237-1248 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).
  2. C. R. Shaddix and T. C. Williams, “Soot: giver and taker of light,” Am. Sci. 95, 232-239 (2007).
  3. Z. A. Mansurov, “Soot formation in combustion processes,” Combust. Explos. Shock Waves (English translation) 41, 727-744 (2005). [CrossRef]
  4. D. W. Dockery and P. H. Stone, “Cardiovascular risks from fine particulate air pollution,” N. Engl. J. Med. 356, 511-513 (2007). [CrossRef] [PubMed]
  5. K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007). [CrossRef] [PubMed]
  6. R. M. Frinstrom and A. A. Westenberg, Flame Structure (McGraw-Hill, 1965).
  7. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  8. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000). [CrossRef]
  9. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  10. D. Hoffman, K.-U. Münch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525-527 (1996). [CrossRef] [PubMed]
  11. D. Hofmann and A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” Proc. Combust. Inst. 26, 945-950 (1996).
  12. S. P. Kearney, R. W. Schefer, S. J. Beresh, and T. W. Grasser, “Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering,” Appl. Opt. 44, 1548-1558(2005). [CrossRef] [PubMed]
  13. M. Afzelius, P.-E. Bengtsson, J. Bood, C. Brackmann, and A. Kurtz, “Development of multipoint vibrational coherent anti-Stokes Raman spectroscopy for flame applications,” Appl. Opt. 45, 1177-1186 (2006). [CrossRef] [PubMed]
  14. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156-1166 (1981). [CrossRef] [PubMed]
  15. W. Qin, Y.-L. Chen, and J. W. L. Lewis, “Time-resolved temperature images of laser-ignition using OH two-line laser-induced fluorescence (LIF) thermometry,” Tech. Rep. Article Number 200508, IFRF Combustion Journal (2005).
  16. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000-4012 (1994). [CrossRef] [PubMed]
  17. J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001). [CrossRef]
  18. M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997). [CrossRef]
  19. M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998). [CrossRef]
  20. W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40, 748-756 (2001). [CrossRef]
  21. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007). [CrossRef]
  22. T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007). [CrossRef]
  23. B. Atakan and A. T. Hartlieb, “Laser diagnostics of NO reburning in fuel-rich propene flames,” Appl. Phys. B 71, 697-702 (2000). [CrossRef]
  24. M. Aldén, P. Grafström, H. Lundberg, and S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection,” Opt. Lett. 8, 241-243 (1983). [CrossRef] [PubMed]
  25. R. G. Joklik and J. W. Daily, “Two-line atomic fluorescence temperature measurement in flames: an experimental study,” Appl. Opt. 21, 4158-4162 (1982). [CrossRef] [PubMed]
  26. H. Haraguchi and J. D. Winefordner, “Flame diagnostics: local temperature profiles and atomic fluorescence intensity profiles in air-acetylene flames,” Appl. Spectrosc. 31, 195-200(1977). [CrossRef]
  27. J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000). [CrossRef]
  28. H. Haraguchi, B. Smith, S. Weeks, D. J. Johnson, and J. D. Winefordner, “Measurement of small volume flame temperatures by the two-line atomic fluorescence method,” Appl. Spectrosc. 31, 156-163 (1977). [CrossRef]
  29. C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).
  30. C. T. J. Alkemade, “A theoretical discussion on some aspects of atomic fluorescence spectroscopy in flames,” Pure Appl. Chem. 23, 73-98 (1970). [CrossRef]
  31. J. E. Dec and J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737-1745 (1986).
  32. J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005). [CrossRef]
  33. I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004). [CrossRef]
  34. I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007). [CrossRef]
  35. J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005). [CrossRef]
  36. R. K. Winge, V. A. Fassel, and R. N. Kniseley, “Direct nebulization of metal samples for flame atomic-emission and absorption spectroscopy,” Appl. Spectrosc. 25, 636-642(1971). [CrossRef]
  37. P. A. Bonczyk, “Effects of metal additives on soot precursors and particulates in a C2H4/O22/N2/Ar premixed flame,” Fuel 70, 1403-1411 (1991). [CrossRef]
  38. U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).
  39. B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).
  40. J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry (Marcel Dekker, 1969), Vol. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited