OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: 1288–1294

Tight focusing of elliptically polarized vortex beams

Baosuan Chen and Jixiong Pu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. 1288-1294 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the focusing properties of elliptically polarized vortex beams. Based on vectorial Debye theory, some numerical calculations are given to illustrate the intensity and phase distribution properties of tightly focused vortex beams. It is found that the spin angular momentum of the elliptically polarized vortex beam will convert to orbital angular momentum by the focusing. The influence of corresponding parameters on focusing properties is also investigated in great detail. It is shown that elliptical light spots can be obtained in the focal plane. Moreover the elliptical spot may rotate and the spot shape may change with the change of certain parameters. These properties are quite important for application of this kind of elliptically polarized vortex beam.

© 2009 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.1220) Imaging systems : Apertures
(260.5430) Physical optics : Polarization

ToC Category:
Diffraction and Gratings

Original Manuscript: October 30, 2008
Revised Manuscript: December 17, 2008
Manuscript Accepted: January 26, 2009
Published: February 23, 2009

Baosuan Chen and Jixiong Pu, "Tight focusing of elliptically polarized vortex beams," Appl. Opt. 48, 1288-1294 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349-357 (1959). [CrossRef]
  2. A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561-B1565 (1965). [CrossRef]
  3. J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81, 1576-1578 (2002). [CrossRef]
  4. N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229-234 (2007). [CrossRef]
  5. T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314-319 (2007). [CrossRef]
  6. Z. Zhang, J. Pu, and X. Wang, “Focusing of partially coherent Bessel-Gaussian beams through a high numerical-aperture objective,” Opt. Lett. 33, 49-51 (2008). [CrossRef]
  7. G. M. Lerman and U. Levy, “Tight focusing of spatially variant vector optical fields with elliptical symmetry of liner polarization,” Opt. Lett. 32, 2194-2196 (2007). [CrossRef] [PubMed]
  8. E. P. Walker and T. D. Milster, “Beam shaping for optical data storage,” Proc. SPIE 4443, 73-92 (2001). [CrossRef]
  9. L. E. Helseth, “Focusing of atoms with strongly confined light potentials,” Opt. Commun. 212, 343-352 (2002). [CrossRef]
  10. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  11. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000). [CrossRef]
  12. Z. Zhang, J. Pu, and X. Wang, “Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal,” Appl. Opt. 47, 1963-1967 (2008). [CrossRef] [PubMed]
  13. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  14. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219-276 (2001). [CrossRef]
  15. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  16. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Ween, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993). [CrossRef]
  17. Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tightly focused circularly polarized plane waves,” Appl. Phys. Lett. 89, 241104 (2006). [CrossRef]
  18. F. S. Roux, “Distribution of angular momentum and vortex morphology in optical beams,” Opt. Commun. 242, 45-55(2004). [CrossRef]
  19. J. Courtial and M. J. Padgett, “Limit to the orbital angular momentum per unit energy in a light beam that can be focused onto a small particle,” Opt. Commun. 173, 269-274 (2000). [CrossRef]
  20. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064-4075 (1997). [CrossRef]
  21. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited