OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: 1322–1327

Ultracompact and highly sensitive common-path phase-shifting interferometer using photonic crystal polarizers as a reference mirror and a phase shifter

Toshihiko Nakata and Masahiro Watanabe  »View Author Affiliations


Applied Optics, Vol. 48, Issue 7, pp. 1322-1327 (2009)
http://dx.doi.org/10.1364/AO.48.001322


View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a common-path phase-shifting interferometer in which photonic crystal polarizers (PCPs) are utilized as a reference mirror and a phase shifter, allowing ultracompact and highly sensitive optics. When a laser beam polarized at 45 ° relative to the optical axis of the PCP-based reference mirror is incident, the polarization component parallel to the optical axis (s-polarized beam) is reflected and used as a reference beam. The perpendicular component (p-polarized beam) passes through the PCP coupled with a quarter-wave plate (QWP) and serves as a probe beam. This beam, with its polarization transformed in the sequence p, right-circular, s, left-circular, and p, irradiates the sample surface twice, doubling the phase change due to displacement of the sample. The probe beam is then retransmitted through the PCP, where it recombines with the reference beam. Four interferogram channels in phase quadrature are generated using a newly developed phase shifter, composed of a QWP and a monolithically integrated array of four PCPs. Preliminary experiments demonstrate that the PCPs perform successfully as a reference mirror and a phase shifter, and that the interferometer has a remarkable displacement sensitivity, as low as 40 pm .

© 2009 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(260.5430) Physical optics : Polarization
(100.5088) Image processing : Phase unwrapping
(050.5298) Diffraction and gratings : Photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 27, 2008
Revised Manuscript: January 15, 2009
Manuscript Accepted: January 16, 2009
Published: February 23, 2009

Citation
Toshihiko Nakata and Masahiro Watanabe, "Ultracompact and highly sensitive common-path phase-shifting interferometer using photonic crystal polarizers as a reference mirror and a phase shifter," Appl. Opt. 48, 1322-1327 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-7-1322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).
  2. C. Chou, J.-C. Shyu, Y.-C. Huang, and C.-K. Yuan, “Common-path optical heterodyne profilometer: a configuration,” Appl. Opt. 37, 4137-4142 (1998). [CrossRef]
  3. T. Nakata and T. Ninomiya, “A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging,” J. Appl. Phys. 96, 6970-6980 (2004). [CrossRef]
  4. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférential du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966). [CrossRef]
  5. R. Crane, “Interference phase measurement,” Appl. Opt. 8, 538-542 (1969).
  6. J. H. Bruning, D. R. Heriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974). [CrossRef] [PubMed]
  7. J. C. Wyant, “Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems,” Appl. Opt. 14, 2622-2626 (1975). [CrossRef] [PubMed]
  8. H. Kadono, N. Takai, and T. Asakura, “New common-path phase shifting interferometer using a polarization technique,” Appl. Opt. 26, 898-904 (1987). [CrossRef] [PubMed]
  9. O. K. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59-61 (1984). [CrossRef] [PubMed]
  10. C. R. Mercer, K. Creath, and N. Rashidnia, “A phase-stepped point diffraction interferometer using liquid crystals,” Proc. SPIE 2544, 87-93 (1995).
  11. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526-1528 (1996). [CrossRef] [PubMed]
  12. J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235-238 (1988). [CrossRef]
  13. D.-C. Su and L.-H. Shyu, “Phase-shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951-959 (1991). [CrossRef]
  14. M. B. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41, 668-677 (2002). [CrossRef] [PubMed]
  15. C. Zhao, D. Kang, and J. H. Burge, “Effects of birefringence on Fizeau interferometry that uses a polarization phase-shifting technique,” Appl. Opt. 44, 7548-7553 (2005). [CrossRef] [PubMed]
  16. R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361-364 (1984).
  17. T. Keem, S. Gonda, I. Misumi, Q. Huang, and T. Kurosawa, “Simple, real-time method for removing the cyclic error of a homodyne interferometer with a quadrature detector system,” Appl. Opt. 44, 3492-3498 (2005). [CrossRef] [PubMed]
  18. J. Millerd, N. Brock, J. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304-314 (2004). [CrossRef]
  19. M. Novak, J. Millerd, N. Brock, M. B. North-Morris, J. Hayes, and J. C. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861-6868 (2005). [CrossRef] [PubMed]
  20. T. Nakata and M. Watanabe, “Common-path double-pass optical interferometry using a wire-grid polarizer as a reference mirror,” Opt. Rev. 15, 276-279 (2008). [CrossRef]
  21. B. Schnabel, E. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220-226 (1999). [CrossRef]
  22. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412(2003). [CrossRef]
  23. M. Xu, H. P. Urbach, D. K. G. de Bore, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303-2320 (2005). [CrossRef] [PubMed]
  24. S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260-1261 (1997). [CrossRef]
  25. S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463-465(1999). [CrossRef]
  26. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999). [CrossRef]
  27. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63-70 (2002). [CrossRef]
  28. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46, 4963-4967 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited