OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: 1328–1336

Quantitative fluorescence tomography with functional and structural a priori information

Yuting Lin, Han Yan, Orhan Nalcioglu, and Gultekin Gulsen  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. 1328-1336 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (608 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the necessity of functional and structural a priori information for quantitative fluorescence tomography (FT) with phantom studies. Here the functional a priori information is defined as the optical properties of the heterogeneous background that can be measured by a diffuse optical tomography (DOT) system. A CCD-based noncontact hybrid FT/DOT system that could take measurements at multiple views was built. Multimodality phantoms with multiple compartments were constructed and used in the experiments to mimic a heterogeneous optical background. A 3.6 mm diameter object deeply embedded in a heterogeneous optical background could be localized without any a priori information, but the recovered fluorophore concentration only reached one tenth of the true concentration. On the other hand, the true fluorophore concentration could be recovered when both functional and structural a priori information is utilized to guide and constrain the FT reconstruction algorithm.

© 2009 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 13, 2008
Revised Manuscript: November 11, 2008
Manuscript Accepted: January 17, 2009
Published: February 23, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Yuting Lin, Han Yan, Orhan Nalcioglu, and Gultekin Gulsen, "Quantitative fluorescence tomography with functional and structural a priori information," Appl. Opt. 48, 1328-1336 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  2. C. Bremer, V. Ntziachristos, B. Weitkamp, G. Theilmeier, W. Heindel, and R. Weissleder, “Optical imaging of spontaneous breast tumors using protease sensing 'smart' optical probes,” Invest. Radiol. 40, 321-327 (2005). [CrossRef] [PubMed]
  3. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327-331 (2001). [CrossRef] [PubMed]
  4. Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer. Res. Treat. 4, 429-436 (2005). [PubMed]
  5. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1-33 (2006). [CrossRef] [PubMed]
  6. M. A. Funovics, H. Alencar, X. Montet, R. Weissleder, and U. Mahmood, “Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization,” Gastrointest. Endosc. 64, 589-597 (2006). [CrossRef] [PubMed]
  7. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  8. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003). [PubMed]
  9. A. Garofalakis, G. Zacharakis, H. Meyer, E. N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007). [PubMed]
  10. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  11. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419-430 (2004). [CrossRef] [PubMed]
  12. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  13. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57-75 (2001). [CrossRef]
  14. G. Gulsen, M. B. Unlu, O. Birgul, and O. Nalcioglu, “Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system,” Proc. SPIE 6431, 64310D (2007). [CrossRef]
  15. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer. Res. Treat. 5, 351-363 (2006). [PubMed]
  16. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841-853 (1997). [CrossRef] [PubMed]
  17. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 8828-8833 (2006). [CrossRef] [PubMed]
  18. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004). [CrossRef] [PubMed]
  19. O. Birgul, G. Gulsen, R. Shafiiha, M. B. Unlu, and O. Nalcioglu, “In vivo small animal imaging using combined MR-DOT system,” in Biomedical Optics, Technical Digest (Optical Society of America, 2006), paper TuG1.
  20. G. Gulsen, M. B. Unlu, O. Birgul, H. Yan, and O. Nalcioglu, “A multi-modality system for dynamic imaging of cancer,” in Proceedings of IEEE Conference on International Symposium on Biomedical Imaging (IEEE, 2006), Vol. 3.
  21. M. Guven, K. Kwon, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107 (2007). [CrossRef]
  22. A. Serdaroglu, B. Yazici, and V. Ntziachristos, “Fluorescence molecular tomography based on a priori information,” in Biomedical Optics Conference (OSA., 2006)
  23. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79, 064302 (2008). [CrossRef] [PubMed]
  24. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066 (2007). [CrossRef] [PubMed]
  25. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011-2016 (2008). [CrossRef] [PubMed]
  26. L. Hervé, A. Koenig, A. D. Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007). [CrossRef] [PubMed]
  27. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  28. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography,” J Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  29. R. C. Haskell, L. O. Svaasand, T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  30. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, H. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043 (2007). [CrossRef] [PubMed]
  31. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569-5585 (2007). [CrossRef] [PubMed]
  32. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J Biomed. Opt. 13, 041303 (2008). [CrossRef] [PubMed]
  33. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669-1678(2007). [CrossRef] [PubMed]
  34. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with structural a priori information: property analysis,” Proc. SPIE 6850, 35 (2008).
  35. A. Da Silva, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltie, and P. Rizo, “Coupling x-ray and optical tomography systems for in vivo examination of small animals,” in Proceedings of the 29th Annual International Conference of the IEEE EMBS (IEEE, 2007), pp. 3335-3338.
  36. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” in Proceedings of IEEE Conference on Translational Medical Imaging (IEEE2004), pp. 492-500. [CrossRef]
  37. A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltie, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008). [CrossRef] [PubMed]
  38. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005). [CrossRef] [PubMed]
  39. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Rocken, R. E. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET-MRI: a new approach for functional and morphological imaging,” Nat. Med. 14, 459-465 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited