OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C151–C158

Investigation of a mercurous chloride acousto-optic cell based on longitudinal acoustic mode

Neelam Gupta  »View Author Affiliations


Applied Optics, Vol. 48, Issue 7, pp. C151-C158 (2009)
http://dx.doi.org/10.1364/AO.48.00C151


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A number of spectral imagers using acousto-optic tunable filters (AOTFs) operating from the UV to the longwave infrared (LWIR) using KDP, Mg F 2 , Te O 2 , and Tl 3 As Se 3 crystals to cover different spectral regions have been developed. In the LWIR there is a lack of high quality acousto-optic (AO) materials. Mercurous halide ( Hg 2 Cl 2 and Hg 2 Br 2 ) crystals are highly anisotropic with a high AO figure of merit due to slow acoustic velocities and high photoelastic constants and are transparent over a wide spectral region from 0.35 to 20 μm for Hg 2 Cl 2 and from 0.4 to 30 μm for Hg 2 Br 2 . AO modulators, deflectors, and AOTFs based on these crystals can operate over a wide spectral range. Single crystals of these materials are being grown and some prototype devices have been fabricated. Results are presented from device characterization for an AO cell fabricated in Hg 2 Cl 2 based on longitudinal acoustic mode propagation. This device was very useful in demonstrating the AO interaction as well as soundness of the transducer bonding technique. Acoustic phase velocity is calculated and measured, diffraction efficiency is obtained from experiments, and the AO figure of merit of the sample is evaluated.

© 2009 Optical Society of America

OCIS Codes
(160.1050) Materials : Acousto-optical materials
(230.1040) Optical devices : Acousto-optical devices
(170.1065) Medical optics and biotechnology : Acousto-optics

History
Original Manuscript: August 5, 2008
Revised Manuscript: December 5, 2008
Manuscript Accepted: January 8, 2009
Published: February 5, 2009

Citation
Neelam Gupta, "Investigation of a mercurous chloride acousto-optic cell based on longitudinal acoustic mode," Appl. Opt. 48, C151-C158 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-7-C151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gupta and V. B. Voloshinov, “Hyperspectral imaging performance of a TeO2 imaging acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30, 985-987 (2005). [CrossRef] [PubMed]
  2. V. B. Voloshinov and N. Gupta, “Investigation of magnesium fluoride crystals for imaging acousto-optic tunable filter applications,” Appl. Opt. 45, 3127-3135 (2006). [CrossRef] [PubMed]
  3. V. Voloshinov and N. Gupta, “Ultraviolet/visible imaging acousto-optic tunable filters in KDP,” Appl. Opt. 43, 3901-3909 (2004). [CrossRef] [PubMed]
  4. N. Gupta and V. Voloshinov, “Hyperspectral imager from ultraviolet to visible using KDP AOTF,” Appl. Opt. 43, 2752-2759 (2004). [CrossRef] [PubMed]
  5. N. Gupta, R. Dahmani, and S. Choy, “Acousto-optic tunable filter based visible-to-near-infrared spectropolarimetric imager,” Opt. Eng. 41, 1033-1038 (2002). [CrossRef]
  6. D. R. Suhre and N. Gupta, “Acousto-optic tunable filter sidelobe analysis and reduction using telecentric confocal optics,” Appl. Opt. 44, 5797-5801 (2005). [CrossRef] [PubMed]
  7. D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43, 1255-1260 (2004). [CrossRef] [PubMed]
  8. N. Gupta and D. R. Suhre, “AOTF imaging spectrometer with full Stokes polarimetric capability,” Appl. Opt. 46, 2632-2037(2007). [CrossRef] [PubMed]
  9. V. B. Voloshinov and N. Gupta, “Acousto-optic imaging in the mid-infrared region of the spectrum,” Proc. SPIE 3900, 62-73(1999). [CrossRef]
  10. N. Gupta, “Development of agile wide spectral range hyperspectral/polarization imagers,” in Photonic Applications Systems Technologies Conference PhAST (Optical Society of America, 2005), paper PThA3.
  11. N. Gupta, “Hyperspectral and polarization imaging with double-transducer AOTF for wide spectral band coverage,” Int. J. High Speed Electron. Syst. 17, 845-855 (2007). [CrossRef]
  12. N. Gupta and V. B. Voloshinov, “Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range,” Appl. Opt. 46, 1081-1088 (2007). [CrossRef] [PubMed]
  13. N. Gupta, “Hyperspectral imager development at Army Research Laboratory,” Proc. SPIE 6940, 69401P (2008). [CrossRef]
  14. N. Gupta, “Acousto-optic tunable filters for Infrared Imaging,” Proc SPIE 5953, 59530O (2005).
  15. N. Gupta, D. R. Suhre, and M. Gottlieb, “LWIR spectral imager with an 8 cm−1 passband acousto-optic tunable filter,” Opt. Eng. 44094601 (2005). [CrossRef]
  16. N. B. Singh, D. Suhre, N. Gupta, W. Rosch, and M. Gottlieb, “Performance of TAS cystal for AOTF iaging,” J. Cryst.Growth 225, 124-128 (2001). [CrossRef]
  17. J. D. Feichtner, M. Gottlieb, and J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1-3 (1979). [CrossRef]
  18. D. Suhre and E. Villa, “Imaging spectroradiometer for the 8-12 μm region with 3 cm−1 passband acousto-optic tunable filter,” Appl. Opt. 37, 2340-2345 (1998). [CrossRef]
  19. N. B. Singh, D. Kahler, D. J. Knuteson, M. Gottlieb, D. Suhre, A. Berghmans, B. Wagner, J. Hedrick, T. Karr, and J. J. Hawkins, “Operational characteristics of a long-wavelength IR multispectral imager based on an acousto-optic tunable filter,” Opt. Eng. 47, 013201 (2008). [CrossRef]
  20. D. J. Knuteson, N. B. Singh, N. Gupta, M. Gottlieb, D. Suhre, A. Berghmans, D. Kahler, B. Wagner, C. Lears, and J. J. Hawkins, “Performance of crystals; operational characteristics of mercurous bromide crystals for acousto-optic applications,” inProceedings of the XIII International Workshop on Physics of Semiconductor Devices, Section H, Vol. II (Allied Publishers, 2005), pp. 1184-1189.
  21. D. J. Knuteson, N. B. Singh, N. Gupta, M. Gottlieb, D. Suhre, A. Berghmans, D. Thomson, D. Kahler, B. Wagner, J. Hawkins, and M. Fitelson, “Design and fabrication of mercurous bromide acousto-optic tunable filters,” Proc. SPIE 588158810E (2005). [CrossRef]
  22. D. J. Knuteson, N. B. Singh, M. Gottlieb, D. Suhre, and N. Gupta, “Crystal growth, fabrication and design of mercurous bromide acousto-optic tunable filters,” Opt. Eng. 46, 064001 (2007). [CrossRef]
  23. J. Kim, S. B. Trivedi, J. Soos, N. Gupta, and W. Palosz, “Development of mercurous halide crystals for acousto-optic devices,” Proc. SPIE 666166610B (2007). [CrossRef]
  24. J. Kim, S. B. Trivedi, J. Soos, N. Gupta, and W. Palosz, “Growth of Hg2Cl2 and Hg2Br2 single crystals by physical vapor transport,” J. Cryst. Growth 310, 2457-2463 (2008). [CrossRef]
  25. V. B. Voloshinov, V. I. Balakshy, L. A. Kulakova, and N. Gupta, “Acousto-optic properties of tellurium that are useful in anisotropic diffraction,” J. Opt. A 10, 095002 (2008). [CrossRef]
  26. M. Silvestrova, C. Barta, G. Dobrshansky, L. Belyaev, and Y. V. Pisarevsky, “Acousto-optic properties of calomel crystal Hg2Cl2,” Sov. Phys. Crystallogr. 20, 649-651 (1975).
  27. C. Barta, P. M. Sileverstova, N. A. Moiseeva, and Yu. V. Pisarevskiy, “Propagation of acoustic waves in crystals of univalent halides,” Krist. Tech. 15, 843-848(1980). [CrossRef]
  28. N. B. Singh, M. Gottlieb, and A. Goutzoulis, “Devices made from vapor-phase grown mercurous chloride crystals,” J. Cryst. Growth 82, 274-278 (1987). [CrossRef]
  29. M. Gottlieb, A. P. Goutzoulis, and N. B. Singh, “Fabrication and characterization of mercurous chloride acoustooptic devices,” Appl. Opt. 26, 4681-4687 (1987). [CrossRef] [PubMed]
  30. A. P. Goutzoulis and M. Gottlieb, “Characteristics and design of mercurous halide Bragg cells for optical signal processing,” Opt. Eng. 27, 157-163 (1988).
  31. M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992). [CrossRef]
  32. N. B. Singh and R. Mazelsky, “Development of mercurous halides for acousto-optic devices,” Curr. Top. Cryst. Growth Res. 2, 435-444 (1995).
  33. A. Goutzoulis and D. Pape, Designing and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).
  34. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).
  35. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973), Vol. 1.
  36. J. F. Nye, Physical Properties of Crystals (Masson, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited