OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C46–C54

Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods

Jerzy Bodzenta, Anna Kaźmierczak-Bałata, Krystyna B. Wokulska, Jacek Kucytowski, Tadeusz Łukasiewicz, and Władysław Hofman  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. C46-C54 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate ( YVO 4 ), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO 4 with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.

© 2008 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.1190) Materials : Anisotropic optical materials
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials

Original Manuscript: August 1, 2008
Manuscript Accepted: September 11, 2008
Published: November 13, 2008

Jerzy Bodzenta, Anna Kaźmierczak-Bałata, Krystyna B. Wokulska, Jacek Kucytowski, Tadeusz Łukasiewicz, and Władysław Hofman, "Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods," Appl. Opt. 48, C46-C54 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4, 182-184(1964). [CrossRef]
  2. X. Xu, Z. Zhao, P. Song, J. Xu, and P. Deng, “Growth of high-quality single crystals of 50 at. % Yb:YAG and its spectral properties,” J. Alloys Compd. 364, 311-314 (2004). [CrossRef]
  3. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
  4. Y. Sato and T. Taira, “The studies of thermal conductivity of GdVO4, YVO4 and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528-10536 (2006). [CrossRef] [PubMed]
  5. www.redoptronics.com.
  6. X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12(x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529-532 (2004). [CrossRef]
  7. H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett. 55, 1-7 (2002). [CrossRef]
  8. H. Zhang, J. Liu, J. Wang, Ch. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, Y. T. Chow, and H. Jiang, “Laser properties of different Nd-doped concentration Nd:YVO4 laser crystals,” Opt. Lasers Eng. 38, 527-536 (2002). [CrossRef]
  9. G. Aka, A. Kahn-Harari, F. Moguel, D. Vivien, F. Salin, P. Coquelin, P. Colin, and D. Pelenc J. P. Damlet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238-2247 (1997). [CrossRef]
  10. F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, “Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal,” J. Opt. Soc. Am. B 16, 164-172 (1999). [CrossRef]
  11. F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619-1623 (1998). [CrossRef]
  12. S. Chenais, F. Duron, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153(2006). [CrossRef]
  13. J. Bodzenta, A. Kaźmierczak-Bałata, K. Wokulska, J. Kucytowski, P. Szperlich, T. Łukasiewicz, and B. Hofman, “Analysis of influence of Yb concentration on thermal, elastic, optical and lattice parameters in YAG single crystal,” J. Alloys Compd. doi:10.1016/j.jallcom.2008.05.041 (2008), . [CrossRef]
  14. S. Srinivas Rao, A. Chandra Shekhar Reddy, D. Ravinder, B. Ravinder Reddy, and D. Linga Reddy, “Ultrasonic investigation on mixed manganese-zinc ferrite,” Mater. Lett. 56, 175-177 (2002). [CrossRef]
  15. W. L. Bond, “Precision lattice constant determination,“ Acta Cryst. 13, 814-818 (1960). [CrossRef]
  16. J. Kucytowski and K. Wokulska, “Lattice parameter measurements of boron-doped Si single crystals,” Cryst. Res. Technol . 40, 424-428 (2005). [CrossRef]
  17. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and material properties of highly doped Yb:YAG”, IEEE J. Quantum Electron. 37, 135-144 (2001). [CrossRef]
  18. W. F. Banholzer and T. R. Anthony, “Diamond properties as a function of isotopic compositions”, Thin Solid Films 212, 1-10 (1992). [CrossRef]
  19. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,”Acta Cryst. A 32, 751-767 (1976). [CrossRef]
  20. Ch. Kittel, Introduction to Solid State Physics (Clarendon, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited