OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C55–C66

Acousto-optic investigation of propagation and reflection of acoustic waves in paratellurite crystal

Vitaly B. Voloshinov and Nataliya V. Polikarpova  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. C55-C66 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The paper presents results on acousto-optic investigation of unusual acoustic phenomena taking place in crystals possessing strong anisotropy of elastic properties. Advantages of the applied method of analysis are demonstrated by the example of the commonly used acousto-optic material tellurium dioxide. The major goal of the research consists of experimental verification of theoretical conclusions related to peculiar cases of acoustic propagation and reflection recently observed in the crystalline material. In particular, the case of glancing incidence and the following reflection of elastic energy from a free boundary separating the paratellurite crystal and the vacuum is examined in the paper. It is shown in the acousto-optic experiment that, in the case of glancing incidence, energy flow of a reflected acoustic wave may propagate practically in a reverse direction with respect to an incident wave. It is also proved that strong elastic anisotropy of the crystal is responsible for the unusual propagation and reflection of the acoustic waves. The research confirms the conclusion that the examined acoustic effects may be useful in development of new acousto-optic devices.

© 2008 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(160.1050) Materials : Acousto-optical materials
(170.7180) Medical optics and biotechnology : Ultrasound diagnostics
(230.1040) Optical devices : Acousto-optical devices
(170.1065) Medical optics and biotechnology : Acousto-optics

Original Manuscript: July 22, 2008
Revised Manuscript: October 8, 2008
Manuscript Accepted: October 8, 2008
Published: November 19, 2008

Vitaly B. Voloshinov and Nataliya V. Polikarpova, "Acousto-optic investigation of propagation and reflection of acoustic waves in paratellurite crystal," Appl. Opt. 48, C55-C66 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Korpel, Acousto-Optics (Marcel Dekker, 1997).
  2. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  3. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).
  4. A. P. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).
  5. B. A. Auld, Acoustic Fields and Waves in Solids (Robert Krieger, 1990).
  6. N. Uchida and Y. Ochmachi, “Elastic and photoelastic properties of TeO2,” J. Appl. Phys. 40, 4692-4695 (1969). [CrossRef]
  7. Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972). [CrossRef]
  8. G. Artl and H. Shweppe, “Paratellurite a new piezoelectric material,” Solid State Commun. 6, 783-784 (1968). [CrossRef]
  9. E. G. Lean and W. H. Chen, “Large angle beam steering in acoustically anisotropic crystal,” Appl. Phys. Lett. 35, 101-103(1979). [CrossRef]
  10. D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986). [CrossRef]
  11. J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993). [CrossRef]
  12. J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998). [CrossRef]
  13. Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002). [CrossRef]
  14. V. B. Voloshinov, “Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal,” Ultrasonics 31, 333-338(1993). [CrossRef]
  15. N. V. Polikarpova and V. B. Voloshinov, “Intensity of reflected acoustic waves in acousto-optic crystal tellurium dioxide,” Proc. SPIE 5828, 25-36 (2004). [CrossRef]
  16. V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).
  17. M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992). [CrossRef]
  18. N. V. Polikarpova and V. B. Voloshinov, “Glancing incidence and back reflection of elastic waves in tetragonal crystals,” Proc. SPIE 5953, 0C1-0C12 (2005).
  19. V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005). [CrossRef]
  20. A. V. Gierus and V. V. Proklov, “Effects at skimming incidence of sound on a boundary in TeO2,” Sov. Phys. Tech. Phys. 25, 984-987 (1983).
  21. M. J. Musgrave, “Refraction and reflection of plane elastic waves at a plane boundary between aeolotropic media,” Geophys. J. R. Astron. Soc. 3, 406-418 (1960).
  22. S. E. Harris and R. D. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744-747 (1969). [CrossRef]
  23. S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970). [CrossRef]
  24. I. C. Chang, “Collinear beam acousto-optic tunable filters,” Electron. Lett. 28, 1225-1226 (1992). [CrossRef]
  25. V. B. Voloshinov, “Close to collinear acousto-optic interaction in paratellurite,” Opt. Eng. 31, 2089-2094 (1992). [CrossRef]
  26. V. B. Voloshinov and N. V. Polikarpova, “Application of acousto-optic interactions in anisotropic media for control of light radiation,” Acta Acust. Acust. 89, 930-935 (2003).
  27. I. C. Chang, “Tunable acousto-optic filter utilizing acoustic beam walk-off in crystal quartz,” Appl. Phys. Lett. 25, 323-324(1974). [CrossRef]
  28. C. D. Tran and G.-C. Huang, “Characterization of the collinear beam acousto-optic tunable filter,” Opt. Eng. 38, 1143-1148(1999). [CrossRef]
  29. J. Sapriel, D. Charissoux, and V. B. Voloshinov, “Tunable acousto-optic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 864-871 (2002). [CrossRef]
  30. V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited