OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C74–C80

Determination of thermal conductivity of thin layers used as transparent contacts and antireflection coatings with a photothermal method

Anna Kaźmierczak-Bałata, Jerzy Bodzenta, Dorota Korte-Kobylińska, Jacek Mazur, Krystyna Gołaszewska, Eliana Kamińska, and Anna Piotrowska  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. C74-C80 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photothermal experiment with mirage detection was used to determine the thermal conductivity of various thin films deposited on semiconductor substrates. The first type consisted of conducting oxide films: ZnO and CdO deposited on GaSb:Te, while the other contained high dielectric constant Hf O 2 layers on Si. All films were fabricated using a magnetron sputtering technique. Experimental results showed that the value of the thermal conductivity of ZnO and CdO films is lower than the value obtained for Hf O 2 . Thermal conductivities of investigated thin films are about 2 orders of magnitude lower than those corresponding to bulk materials.

© 2008 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.1210) Thin films : Antireflection coatings
(310.6870) Thin films : Thin films, other properties
(310.7005) Thin films : Transparent conductive coatings

Original Manuscript: August 5, 2008
Revised Manuscript: October 13, 2008
Manuscript Accepted: October 17, 2008
Published: November 26, 2008

Anna Kaźmierczak-Bałata, Jerzy Bodzenta, Dorota Korte-Kobylińska, Jacek Mazur, Krystyna Gołaszewska, Eliana Kamińska, and Anna Piotrowska, "Determination of thermal conductivity of thin layers used as transparent contacts and antireflection coatings with a photothermal method," Appl. Opt. 48, C74-C80 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ferro, J. A. Rodriguez, O. Vigil, A. Morales-Acevedo, and G. Contreras-Puente, “F-doped CdO thin films deposited by spray pyrolysis,” Phys. Status Solidi 177, 477-483 (2000). [CrossRef]
  2. A. A. Dakhel and F. Z. Henari, ”Optical characterization of thermally evaporated thin CdO films,” Cryst. Res. Technol. 38, 979-985 (2003). [CrossRef]
  3. L. R. de Leon-Gutierrez, J. J. Cayente-Romero, J. M. Peza-Tapia, E. Barrera-Calva, J. C. Martinez-Flores, and M. Ortega-Lopez, ”Some physical properties of Sn-doped CdO thin films prepared by chemical bath deposition,” Mater. Lett. 60, 3866-3870 (2006). [CrossRef]
  4. M. Z. Najdoski, I. S. Grozdanov, and B. Minceva-Sukarova, “Oriented cadmium oxide thin solid films,” J. Mater. Chem. 6, 761-764 (1996). [CrossRef]
  5. M. K. Jayaray, A. Antony, and M. Ramachandran, “Transparent conducting zinc oxide thin films prepared by off-axis rf magnetron sputtering,” Bull. Mater. Sci. 25, 227-230 (2002). [CrossRef]
  6. A. Abu El-Fadl, E. M. El-Maghraby, and G. A. Mohamad, “Influence of gamma radiation on the absorption spectra and optical energy gap of Li-doped ZnO thin films,” Cryst. Res. Technol. 39, 143-150 (2004). [CrossRef]
  7. C. H. Hsu, Z. K. Yang, P. Chang, M. Hong, J. Kwo, C. Huang, and H. Lee, “Structural investigations of epitaxial HfO2 films by x-ray scattering,” SRMS-5 Conference, Chicago, Illinois, 30 July-2 August 2006.
  8. Evans Analytical Group, “Thin film hafnium oxide (HfO2) thickness, composition, and uniformity measurements by XPS,” Application Note 415, 7 May 2007.
  9. M. Fadel, O. A. Azim, O. A. Omer, and R. R. Basily, “A study of some optical properties of hafnium dioxide (HfO2) thin films and their applications,” Appl. Phys. A 66, 335-343 (1998). [CrossRef]
  10. J. Bodzenta, “Thermal properties of thin films and problems with their determination,” Ann. Chim. Sci. Mater. 32, 401-420 (2007). [CrossRef]
  11. D. I. Florescu, L. G. Mourokh, F. H. Pollak, D. C. Look, G. Cantwell, and X. Li, “High spatial resolution thermal conductivity of bulk ZnO (0001),” J. Appl. Phys. 91, 890-892 (2002). [CrossRef]
  12. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, “Transport properties and thermoelectric performance of (Zn1−yMgy)1−xAlxO,” J. Mater. Chem. 8, 409-412 (1998). [CrossRef]
  13. S. M. Lee, D. G. Cahill, and T. H. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. 52, 253-257 (1995). [CrossRef]
  14. L. C. Aamodt and J. C. Murphy, “Photothermal measurements using a localized excitation source,” J. Appl. Phys. 52, 4903-4914 (1981). [CrossRef]
  15. J. Bodzenta, B. Burak, A. Jagoda, and B. Stańczyk, “Thermal conductivity of AlN and AlN-GaN thin films deposited on Si and GaAs substrates,” Diamond Relat. Mater. 14, 1169-1174 (2005). [CrossRef]
  16. K. Gołaszewska, E. Kamińska, A. Piotrowska, J. Rutkowski, R. Kruszka, E. Kowalczyk, E. Papis, A. Wawro, and T. T. Piotrowski, “Transparent ohmic contacts to GaSb/In(Al)GaAsSb photovoltaic cells,” Phys. Status Solidi A 204, 1051-1055(2007). [CrossRef]
  17. J. Bodzenta and A. Kaźmierczak-Bałata, “Investigation of thermal properties of SiC using photothermal method,” J. Phys. IV 137, 245-250 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited