OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 7 — Mar. 1, 2009
  • pp: C98–C111

Optical Gaussian beam interaction with one-dimensional thermal wave in the Raman–Nath configuration

Roman J. Bukowski  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. C98-C111 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical Gaussian beam interaction with a one-dimensional temperature field in the form of a thermal wave in the Raman–Nath configuration is analyzed. For the description of the Gaussian beam propagation through the nonstationary temperature field the complex geometric optics method was used. The influence of the refractive coefficient modulation by thermal wave on the complex ray phase, path, and amplitude was taken into account. It was assumed that for detection of the modulated Gaussian beam parameters two types of detector can be used: quadrant photodiodes or centroidal photodiodes. The influence of such parameters as the size and position of the Gaussian beam waist, the laser–screen (detector) distance, the thermal wave beam position and width, as well as thermal wave frequency and the distance between the probing optical beam axis and source of thermal waves on the so-called normal signal was taken into account.

© 2009 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(190.4870) Nonlinear optics : Photothermal effects
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media
(260.2710) Physical optics : Inhomogeneous optical media

Original Manuscript: July 30, 2008
Revised Manuscript: October 28, 2008
Manuscript Accepted: October 31, 2008
Published: December 24, 2008

Roman J. Bukowski, "Optical Gaussian beam interaction with one-dimensional thermal wave in the Raman-Nath configuration," Appl. Opt. 48, C98-C111 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580-4588 (1980). [CrossRef]
  2. L. C. Aamodt and C. Murphy, “Photothermal measurement using localised excitation source,” J. Appl. Phys. 52, 4903-4914 (1981). [CrossRef]
  3. F. A. McDonald and G. C. Wetsel, Jr., “Resolution and definition in thermal imaging,” Proceedings of the 1984 Ultrasonics Symposium (IEEE, 1984), pp. 622-628. [CrossRef]
  4. F. A. McDonald, G. C. Wetsel, Jr., and G. E. Jamieson, “Photothermal beam-deflection imaging of vertical interfaces of solids,” Can. J. Phys. 64, 1265-1268 (1986). [CrossRef]
  5. E. L. Lasalle, F. Lepoutre, and J. P. Roger, “Probe beam size effects in photothermal deflection experiments,” J. Appl. Phys. 64, 1-5 (1988). [CrossRef]
  6. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford U. Press, Oxford, 1959).
  7. R. J. Bukowski, “Optical gaussian beam in acoustooptics. Theoretical description of noncollinear isotropic interactions,” Proc. SPIE 5828, 1-15 (2005). [CrossRef]
  8. A. Glazov and K. Muratikov, “Photodeflection signal formation in thermal wave spectroscopy and microscopy of solids within the framework of wave optics. “Mirage” effect geometry,” Opt. Commun. 84, 283-289 (1991). [CrossRef]
  9. A. Glazov and K. Muratikov, “Calculation of photodeflection signal in the framework of wave optics,” Tech. Phys. 38, 344-352 (1993).
  10. R. J. Bukowski, “Mirage effect description in the frame of complex rays optics,” Proc. SPIE 3581, 285-292 (1998). [CrossRef]
  11. R. J. Bukowski and D. Korte, “Gaussian beam phase change and deflection in temperature field of thermal wave,” presented at the Workshop 2001--Photoacoustics and Photothermics, Ebernburg, Germany, 26-28 September 2001.
  12. D. Kobylinska, R. J. Bukowski, B. Burak, J. Bodzenta, and S. Kochowski, “The complex ray theory of photodeflection signal formation--comparison with the ray theory and experimental results,” J. Appl. Phys. 100, 063501 (2006). [CrossRef]
  13. D. Kobylinska, R. J. Bukowski, B. Burak, J. Bodzenta, and S. Kochowski, “Photodeflection signal formation in photothermal measurements--comparison of the complex ray theory, the ray theory, the wave theory, and experimental results,” Appl. Opt. 46, 5216-5227 (2007). [CrossRef]
  14. D. K. Kobylińska, R. J. Bukowski, J. Bodzenta, S. Kochowski, and A. Kaźmierczak-Bałata, “Detector effects in photothermal deflection experiments,” Appl. Opt. 47, 1559-1566 (2008). [CrossRef] [PubMed]
  15. J. Petykiewicz, Wave Optics (Kluwer, 1992).
  16. Yu. A. Kravcov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (WNT, 1993) [Polish edition].
  17. Yu. A. Kravtsov, “Complex rays and complex caustics,” Radiophys. Quantum Electron. 10, 719-730 (1967). [CrossRef]
  18. J. B. Keller and W. Streifer, “Complex rays with applications to Gaussian beams,” J. Opt. Soc. Am. 61, 40-43 (1971). [CrossRef]
  19. J. C. Power and M. A. Schweitzer, “Diffraction theory of the impulse mirage effect,” Opt. Eng. 36, 521-534 (1997). [CrossRef]
  20. J. Bodzenta, “Thermal wave method in investigation of thermal properties of solids,” Eur. Phys. J. Spec. Top. 154, 305-311(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited