OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1430–1435

Single longitudinal mode oscillation from a multi-interferometric cavity

Yuanhu Wang, Yanchen Qu, Weijiang Zhao, Chenghong Jiao, Zhiqiang Liang, and Deming Ren  »View Author Affiliations

Applied Optics, Vol. 48, Issue 8, pp. 1430-1435 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to generate stable single longitudinal mode (SLM) radiation from a multi-interferometric cavity configuration that can be considered as the combination of one Michelson cavity and two Fox–Smith cavities is presented. A numerical model of the interferometric cavity is investigated to optimize the laser for mode selection, and experimental verification has been carried out in a tunable TEA CO 2 laser. Pulse output energy of 300 mJ at 10.6 μm has been obtained at repetition rate of 20 Hz , corresponding to a repetition of SLM operation of 100%. This result shows that this interferometric cavity gives better performance in mode selection than other cavities based on multibeam interference.

© 2009 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 10, 2008
Revised Manuscript: January 24, 2009
Manuscript Accepted: February 11, 2009
Published: March 3, 2009

Yuanhu Wang, Yanchen Qu, Weijiang Zhao, Chenghong Jiao, Zhiqiang Liang, and Deming Ren, "Single longitudinal mode oscillation from a multi-interferometric cavity," Appl. Opt. 48, 1430-1435 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Binks, L. A. W. Gloster, T. A. King, and I. T. McKinnie, “Frequency locking of a pulsed single-longitudinal-mode laser in a coupled-cavity resonator,” Appl. Opt. 36, 9371-9377(1997). [CrossRef]
  2. C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987). [CrossRef]
  3. O. A. Romanovskii, “Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere,” Proc. SPIE 6594, 65940C (2007). [CrossRef]
  4. G. Kovar, D. Larouche, M. Piche, and P. A. Belanger, “Single-longitudinal-mode operation of a TEA CO2 laser with a modified Fabry-Perot interferometer,” Appl. Opt. 24, 3584-3590(1985). [CrossRef] [PubMed]
  5. K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005). [CrossRef]
  6. A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985). [CrossRef]
  7. N. P. Barnes and J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670-2683 (1993). [CrossRef]
  8. A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004). [CrossRef]
  9. J. P. Nicholson and K. S. Lipton, “A tunable stabilized single-mode TEA CO2 laser,” Appl. Phys. Lett. 31, 430-432(1977). [CrossRef]
  10. S. Y. Tochitsky, R. Narang, C. Filip, C. E. Clayton, K. A. Marsh, and C. Joshi, “Generation of 160 ps terawatt-power CO2 laser pulses,” Opt. Lett. 24, 1717-1719 (1999). [CrossRef]
  11. Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008). [CrossRef]
  12. P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422-440 (1972). [CrossRef]
  13. L. R. Botha, R. N. Campbell, E. Ronander, and M. M. Michaelis, “Numerical investigation of a three-mirror resonator for a TE CO2 laser,” Appl. Opt. 30, 2447-2452 (1991). [CrossRef] [PubMed]
  14. J. M. Boon-Engering, L. A. W. Gloster, W. E. van derVeer, I. T. McKinnie, T. A. King, and W. Hogervorst, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087-2089 (1995). [CrossRef] [PubMed]
  15. D. J. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395-2403 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited