OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1452–1462

Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental Satellite System

Steve S. C. Ou, K. N. Liou, X. J. Wang, D. Hagan, A. Dybdahl, M. Mussetto, L. D. Carey, J. Niu, J. A. Kankiewicz, S. Kidder, and T. H. Vonder Haar  »View Author Affiliations


Applied Optics, Vol. 48, Issue 8, pp. 1452-1462 (2009)
http://dx.doi.org/10.1364/AO.48.001452


View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel approach developed for the National Polar-Orbiting Operational Environmental Satellite System/Visible Infrared Imaging Radiometer Suite (VIIRS) to retrieve pixel-level mixed-phase cloud optical thicknesses and effective particle sizes using 0.67, 1.6, 2.25, and 3.7 μm bands reflectance/radiance. This approach utilizes lookup tables of reflectances constructed from radiative transfer simulations and a numerical iterative search method. The capability of this new approach was demonstrated using Moderate Resolution Imaging Spectroradiometer (MODIS) data as proxy to VIIRS. Two proxy scenes, 14 October 2001 over North Platte, Nebraska, during the ninth Cloud Layer Experiment (CLEX-9) and 9 November 2006 over the Great Lakes and Eastern Canada during the Canadian CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Validation Project (C3VP), were analyzed. The performance of the mixed-phase retrieval algorithm was assessed by comparison with the MODIS retrieval products, airborne in situ observations during CLEX-9 and CloudSat data during C3VP.

© 2009 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 27, 2008
Manuscript Accepted: January 27, 2009
Published: March 3, 2009

Citation
Steve S. C. Ou, K. N. Liou, X. J. Wang, D. Hagan, A. Dybdahl, M. Mussetto, L. D. Carey, J. Niu, J. A. Kankiewicz, S. Kidder, and T. H. Vonder Haar, "Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental Satellite System," Appl. Opt. 48, 1452-1462 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-8-1452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Sun and K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds,” J. Clim. 8, 1874-1888 (1995). [CrossRef]
  2. K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008). [CrossRef]
  3. B. Henson, “Smoother skies,” UCAR Quarterly Winter 2007-2008, 8-11 (2008).
  4. C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339-345 (1977). [CrossRef]
  5. K. Sassen and K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838-851(1979). [CrossRef]
  6. H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000). [CrossRef]
  7. G. McFarquhar and S. G. Cober, “Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: impacts on radiative transfer,” J. Clim. 17, 3799-3813 (2004). [CrossRef]
  8. Q. Fu and S. Hollars, “Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE-ACE observations,” J. Atmos. Sci. 61, 2083-2091 (2004). [CrossRef]
  9. A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003). [CrossRef]
  10. M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004). [CrossRef]
  11. P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005). [CrossRef]
  12. C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.
  13. Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.
  14. E. Wong, K. Hutchison, S. C. Ou, and K. N. Liou, “Cirrus cloud top temperatures retrieved from radiances in the National Polar-Orbiting Operational Environmental Satellite Syste--Visible Infrared Imager Radiometer Suite 8.55 and 12.0 μm band passes,” Appl. Opt. 46, 1316-1325 (2007). [CrossRef] [PubMed]
  15. A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003). [CrossRef]
  16. J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.
  17. X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published). [PubMed]
  18. S.-C. Ou, Y. Takano, K. Liou, G. J. Higgins, A. George, and R. Slonaker, “Remote sensing of cirrus cloud optical thickness and effective particle size for the national polar-orbiting operational environmental satellite system visible infrared imager radiometer suite: sensitivity to instrument noise and uncertainties in environmental parameters,” Appl. Opt. 42, 7202-7214 (2003). [CrossRef]
  19. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  20. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds, Part I,” J. Atmos. Sci. 46, 3-19 (1989). [CrossRef]
  21. Q. Fu and K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008-2025(1993). [CrossRef]
  22. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), pp. 583.
  23. T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and Astex regions,” J. Atmos. Sci. 52, 4043-4059(1995). [CrossRef]
  24. S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003). [CrossRef]
  25. M. Wang and M. D. King, “Correction of Rayleigh scattering effects in cloud optical thickness retrievals,” J. Geophys. Res. 102, 915-926 (1997). [CrossRef]
  26. J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited