OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1502–1506

Nanoscale defect detection by heterodyne interferometry

Haoshan Lin, Yuhe Li, Dongsheng Wang, Xiaolei Tong, and Mei Liu  »View Author Affiliations


Applied Optics, Vol. 48, Issue 8, pp. 1502-1506 (2009)
http://dx.doi.org/10.1364/AO.48.001502


View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We construct an instrument that facilitates the measurement of nanoscale defects. It is based on heterodyne interferometry with phase measurement that utilizes a polarizing beam splitter to form a measuring signal and an oscillating cantilever tip that acts as a scanning probe to get the measurement values of sample topography. The dependence of the tip displacement on the variation of tip–sample distance and the comb scanning of the sample topography are investigated by experiments. The results prove that the tip displacement increases and is enough to be discriminated in various positions where the sample is approached. The system has been successfully utilized to measure the defect characterization by measuring the pitch of the standard sample. The results also show that the heterodyne system has good repeatability, a large measurement range, and high accuracy, with a measurement stability of 0.5 nm .

© 2009 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 27, 2008
Revised Manuscript: February 1, 2009
Manuscript Accepted: February 6, 2009
Published: March 2, 2009

Citation
Haoshan Lin, Yuhe Li, Dongsheng Wang, Xiaolei Tong, and Mei Liu, "Nanoscale defect detection by heterodyne interferometry," Appl. Opt. 48, 1502-1506 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-8-1502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.
  2. D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998). [CrossRef]
  3. G. E. Sommargren, “Optical heterodyne profiliglometry,” Appl. Opt. 20, 610-618 (1981). [CrossRef] [PubMed]
  4. D. Pantzer, J. Politch, and L. Ek, “Heterodyne profiligling instrument for the Angstrom region,” Appl. Opt. 25, 4168-4172(1986). [CrossRef] [PubMed]
  5. D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step height measurement by means of dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004). [CrossRef] [PubMed]
  6. C. Yin, D. Lin, Z. Liu, and X. Jiang, “New advance in confocal microscopy,” Meas. Sci. Technol. 17, 596-600 (2006). [CrossRef]
  7. H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001). [CrossRef] [PubMed]
  8. A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007). [CrossRef]
  9. N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005). [CrossRef]
  10. G. Schurmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040-5045 (2001). [CrossRef]
  11. M. Shimodaira, A. Torii, and A. Ueda, “Application of atomic force microscopy to an encoder,” in Proceedings of the International Symposium on Micro Machine and Human Science (IEEE, 1999), pp. 59-64 .
  12. A. W. Sparks and S. R. Manalis, “Scanning probe microscopy with inherent disturbance suppression,” Appl. Phys. Lett. 85, 3929-3931 (2004). [CrossRef]
  13. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823-833 (2006). [CrossRef]
  14. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope,” Opt. Express 13, 5553-5564 (2005). [CrossRef] [PubMed]
  15. S. Blaize, G. Lerondel, A. Bruyant, R. Bachelot, and P. Royer, “Optical field probing in photonic structures by atomic force microscopy combined with optical heterodyne detection,” Proc. SPIE 6896, 689616 (2008). [CrossRef]
  16. C. Chou, J. Shyu, Y. Huang, and C. Yuan, “Common-path optical heterodyne profilometer: a configuration,” Appl. Opt. 37, 4137-4142 (1998). [CrossRef]
  17. J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005). [CrossRef]
  18. Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005). [CrossRef]
  19. D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002). [CrossRef]
  20. M. Yokota, A. Asaka, and T. Yoshino, “Stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement,” Appl. Opt. 42, 1805-1808 (2003). [CrossRef] [PubMed]
  21. E. Wolf, “Significance and measurability of the phase of a spatially coherent optical field,” Opt. Lett. 28, 5-6 (2003). [CrossRef] [PubMed]
  22. Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).
  23. W. Hou, “Optical parts and the nonlinearity in heterodyne interferometers,” Precision Eng. 30, 337-346 (2006). [CrossRef]
  24. M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997). [CrossRef]
  25. P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001). [CrossRef]
  26. I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited