OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1535–1542

Reliability-guided digital image correlation for image deformation measurement

Bing Pan  »View Author Affiliations

Applied Optics, Vol. 48, Issue 8, pp. 1535-1542 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1529 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Image Processing

Original Manuscript: January 5, 2009
Revised Manuscript: February 9, 2009
Manuscript Accepted: February 9, 2009
Published: March 4, 2009

Bing Pan, "Reliability-guided digital image correlation for image deformation measurement," Appl. Opt. 48, 1535-1542 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372. [CrossRef]
  2. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006). [CrossRef]
  3. B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037-7048 (2008). [CrossRef] [PubMed]
  4. B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007). [CrossRef]
  5. B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published). [CrossRef]
  6. B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published). [CrossRef]
  7. B. Pan, H. Xie, J. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527-5533 (2008) [CrossRef] [PubMed]
  8. H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989). [CrossRef]
  9. G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86-92 (1998). [CrossRef]
  10. H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393-400 (2000). [CrossRef]
  11. P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002). [CrossRef]
  12. Y. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite element formulation for a digital image correlation method,” Appl. Opt. 44, 7357-7363 (2005). [CrossRef] [PubMed]
  13. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004). [CrossRef]
  14. S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369-3377 (2008). [CrossRef] [PubMed]
  15. Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420-5428 (2008). [CrossRef] [PubMed]
  16. B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).
  17. D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited