OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 8 — Mar. 10, 2009
  • pp: 1543–1552

Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern

Yasuyuki Hayashi, Satoshi Ashihara, Tsutomu Shimura, and Kazuo Kuroda  »View Author Affiliations

Applied Optics, Vol. 48, Issue 8, pp. 1543-1552 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present simultaneous separation of polydisperse particles driven by an optical gradient force in the absence of microfluidic flow. The separation mechanism involves particle-size dependence of the potential landscape generated by a one-dimensional asymmetric optical stripe pattern. The outcome is that the particles align in different stacks according to their sizes. The dynamics of Brownian particles inside the optical potential landscapes are investigated theoretically and experimentally for various optical intensities and particle sizes. By introducing sequential changes in the optical profile, we also show that this technique allows semipassive arrangement of particles in arbitrary configurations.

© 2009 Optical Society of America

OCIS Codes
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:

Original Manuscript: October 1, 2008
Revised Manuscript: January 9, 2009
Manuscript Accepted: January 16, 2009
Published: March 5, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Yasuyuki Hayashi, Satoshi Ashihara, Tsutomu Shimura, and Kazuo Kuroda, "Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern," Appl. Opt. 48, 1543-1552 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  3. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002). [CrossRef]
  4. V. R. Daria, R. L. Eriksen, and J. Glückstad, “Dynamic optical manipulation of colloidal systems using a spatial light modulator,” J. Mod. Opt. 50, 1601-1614 (2003).
  5. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665-1670 (2004). [CrossRef] [PubMed]
  6. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbet, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912-914 (2001). [CrossRef] [PubMed]
  7. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144-1149 (2004). [CrossRef] [PubMed]
  8. R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array,” Appl. Opt. 42, 5107-5111 (2003). [CrossRef] [PubMed]
  9. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83, 5316-5318 (2003). [CrossRef]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003). [CrossRef] [PubMed]
  11. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004). [CrossRef]
  12. A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601(2005). [CrossRef] [PubMed]
  13. Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007). [CrossRef]
  14. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144-1146(2007). [CrossRef] [PubMed]
  15. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006). [CrossRef]
  16. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006). [CrossRef]
  17. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901(2005). [CrossRef]
  18. Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792-3798 (2008). [CrossRef]
  19. P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008). [CrossRef]
  20. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712-3726 (2008). [CrossRef] [PubMed]
  21. K. Volke-Sepúlveda, S. Chávez-Cerda, V. Garcés-Chávez, and K. Dholakia, “Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles,” J. Opt. Soc. Am. B 21, 1749-1757(2004). [CrossRef]
  22. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025-1034 (2002). [CrossRef]
  23. M. P. Sheetz, Laser Tweezers in Cell Biology (Academic, 1998).
  24. R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922-1930 (1992). [CrossRef]
  25. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef] [PubMed]
  26. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica 7, 284-304 (1940). [CrossRef]
  27. C. W. Gardiner, Handbook of Stochastic Methods, 3rd ed. (Springer, 2004).
  28. W. Mu, Z. Li, L. Luan, G. C. Spalding, G. Wang, and J. B. Ketterson, “Force measurement on microspheres in an optical standing wave,” J. Opt. Soc. Am. B 25, 763-767 (2008). [CrossRef]
  29. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, 1965).
  30. L. P. Faucheux and A. J. Libchaber, “Confined Brownian motion,” Phys. Rev. E 49, 5158-5163 (1994). [CrossRef]
  31. P. A. Maia Neto and H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  32. B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Opt. Express 16, 15765-15776 (2008). [CrossRef] [PubMed]
  33. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597-602(2002). [PubMed]
  34. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Photon-efficient grey level image projection by the generalized phase contrast method,” New J. Phys. 9, 132 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (8209 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited