OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 9 — Mar. 20, 2009
  • pp: 1705–1714

Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes

Mario Stipčević  »View Author Affiliations


Applied Optics, Vol. 48, Issue 9, pp. 1705-1714 (2009)
http://dx.doi.org/10.1364/AO.48.001705


View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a novel construction of an active quenching circuit intended for single-photon detection is presented, along with a few original methods for its evaluation. The circuit has been combined with a standard avalanche photodiode C30902S to form a single-photon detector. This detector has a dead time of 39 ns , maximum random counting frequency of 14 MHz , small afterpulsing probability, an estimated peak detection efficiency of over 20%, and a dark count rate of less than 100 Hz . This simple and robust active quenching circuit can be built from off-the-shelf electronic components and is presented with the detailed schematic diagram.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: September 15, 2008
Revised Manuscript: December 14, 2008
Manuscript Accepted: December 31, 2008
Published: March 13, 2009

Citation
Mario Stipčević, "Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes," Appl. Opt. 48, 1705-1714 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-9-1705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999). [CrossRef]
  3. A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865-3871 (2004). [CrossRef] [PubMed]
  4. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002). [CrossRef]
  5. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894-3900 (1993). [PubMed]
  6. R. G. W. Brown, K. D. Ridley, and J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122-4126 (1986). [CrossRef] [PubMed]
  7. “Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S,” data sheet, EG&G Canada, 1 January 1991.
  8. K. Schaetzel, R. Kalstroem, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon-correlation functions,” J. Opt. Soc. Am. B 6, 937-947 (1989). [CrossRef]
  9. R. G. W. Brown, R. Jones, J. G. Rarity, and K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383-2389 (1987). [CrossRef] [PubMed]
  10. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981). [CrossRef]
  11. S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982). [CrossRef]
  12. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956-1976 (1996). [CrossRef] [PubMed]
  13. F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000). [CrossRef]
  14. V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).
  15. A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express 14, 5021-5030 (2006). [CrossRef] [PubMed]
  16. A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006). [CrossRef]
  17. M. Stipcevic, S. Micanovic, and I. Zamboni are preparing a manuscript to be called “A method of precise measurement of the light output of a LED over 5 orders of magnitude with application to measurement of linearity of single photon detectors”.
  18. Hamamatsu Photonics K.K., “Photon counting using photomultiplier tubes,” Technical Note TPHO9001E04(2005).
  19. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000). [CrossRef]
  20. M. Stipcevic and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007). [CrossRef] [PubMed]
  21. K. P. Aicher, Hamamatsu, private communication, kpaicher@hamamatsu.de

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited