OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 1 — Jan. 1, 2010
  • pp: 108–113

Obtaining a ground-based lidar geometric form factor using coincident spaceborne lidar measurements

Jia Su, M. Patrick McCormick, Zhaoyan Liu, Kevin H. Leavor, Robert B. Lee, III, Jasper Lewis, and Michael T. Hill  »View Author Affiliations


Applied Optics, Vol. 49, Issue 1, pp. 108-113 (2010)
http://dx.doi.org/10.1364/AO.49.000108


View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to determine the geometric form factor of a ground-based lidar using simultaneous lidar measurements made from the ground and from space. The theoretical basis is described. The feasibility of the method is demonstrated by applying it to the measurement data acquired by the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO) lidar and a ground-based lidar located at the Hampton University ( 37.02 ° N , 76.34 ° W ). The geometric factors with different aerosol conditions are retrieved.

© 2010 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.5860) Scattering : Scattering, Raman

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 18, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: November 24, 2009
Published: December 21, 2009

Citation
Jia Su, M. Patrick McCormick, Zhaoyan Liu, Kevin H. Leavor, Robert B. Lee, Jasper Lewis, and Michael T. Hill, "Obtaining a ground-based lidar geometric form factor using coincident spaceborne lidar measurements," Appl. Opt. 49, 108-113 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-1-108


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okasa, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908-3910 (1979). [CrossRef] [PubMed]
  2. T. Halldórsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240-244 (1978). [CrossRef] [PubMed]
  3. K. Sassen and G. C. Dodd, “Lidar crossover function and misalignment effects,” Appl. Opt. 21, 3162-3165 (1982). [CrossRef] [PubMed]
  4. G. M. Ancellet, M. J. Kavaya, R. T. Menzies, and A. M. Brothers, “Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver,” Appl. Opt. 25, 2886-2890 (1986). [CrossRef] [PubMed]
  5. R. Velotta, B. Bartoli, R. Capobianco, and N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999-7007 (1998). [CrossRef]
  6. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511-514 (2002). [CrossRef] [PubMed]
  7. S. Hu, X. Wang, and Y. Wu, “Geometrical form factor determination with Raman backscattering signals,” Opt. Lett. 30, 1879-1881 (2005). [CrossRef] [PubMed]
  8. S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl Opt. 36, 6009-6010(1997). [CrossRef] [PubMed]
  9. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983). [CrossRef] [PubMed]
  10. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670(1999). [CrossRef]
  11. G. J. Kunz, “Bipath method as a way to measure the spatial backscatter and extinction coefficients with lidar,” Appl. Opt. 26, 794-795 (1987). [CrossRef] [PubMed]
  12. H. G. Hughes and M. R. Paulson, “Double-ended lidar technique for aerosol studies,” Appl. Opt. 27, 2273-2278(1988). [CrossRef] [PubMed]
  13. H. E. Jørgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, and E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355-361 (1997). [CrossRef]
  14. I. S. Stachlewska and C. Ritter, “On retrieval of lidar extinction profiles using two-stream and Raman techniques,” Atmos. Chem. Phys. Discuss. 9, 20229-20257 (2009). [CrossRef]
  15. D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE. 4893, 1-11 (2003).
  16. C. Hostetler, Z. Liu, J. Reagan, M. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm theoretical basis document. Part 1: Calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, Hampton, Virginia (2006); Available online at http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf.
  17. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  18. Z. Tao, Z. Liu, D. Wu, and M. P. McCormick, “Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements,” Opt. Lett. 33, 2986-2988 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited