OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 1 — Jan. 1, 2010
  • pp: 137–141

Optical humidity sensing and ultrasound effect for mesoporous silicon one-dimensional photonic crystals

I. G. Kolobov, William B. Euler, and I. A. Levitsky  »View Author Affiliations


Applied Optics, Vol. 49, Issue 1, pp. 137-141 (2010)
http://dx.doi.org/10.1364/AO.49.000137


View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mesoporous silicon (PSi) microcavities (MC) based on one-dimensional photonic crystals have been studied as optical sensors for relative humidity (RH). Oxidized PSi modified the structure of the MC such that the spectral position of the MC resonance peak depended on the humidity. A spectral shift of the MC resonance peak of up to 6 nm to longer wavelengths was observed as the RH increased from 20% to 85%. Ultrasound affects the MC peak spectral position in the reverse direction as a result of water removal from mesoporous structure. This effect can be used for the stabilization of the peak spectral position for an optical interconnect and fast recovery of the optical gas sensors.

© 2010 Optical Society of America

OCIS Codes
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 16, 2009
Revised Manuscript: December 2, 2009
Manuscript Accepted: December 4, 2009
Published: December 24, 2009

Citation
I. G. Kolobov, William B. Euler, and I. A. Levitsky, "Optical humidity sensing and ultrasound effect for mesoporous silicon one-dimensional photonic crystals," Appl. Opt. 49, 137-141 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-1-137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999). [CrossRef]
  2. M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994). [CrossRef]
  3. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005). [CrossRef] [PubMed]
  4. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523 (2000). [CrossRef]
  5. S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001). [CrossRef] [PubMed]
  6. V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997). [CrossRef] [PubMed]
  7. C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005). [CrossRef] [PubMed]
  8. L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003). [CrossRef]
  9. L. De Stefano, R. Moretti, I. Rendina, S. Tundo, and A. M. Rossi, “Smart optical sensors for chemical substances based on porous silicon technology,” Appl. Opt. 43, 167-172(2004). [CrossRef] [PubMed]
  10. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007). [CrossRef]
  11. C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002). [CrossRef]
  12. P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003). [CrossRef]
  13. Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000). [CrossRef]
  14. J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995). [CrossRef]
  15. S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003). [CrossRef]
  16. S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982), p. 112.
  17. C. F. Bohren and D. R. Huffman, The Absorption and Scattering of Light By Small Particles (Wiley, 1983), p. 217.
  18. J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published). [PubMed]
  19. Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003). [CrossRef]
  20. V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007). [CrossRef] [PubMed]
  21. E. B. Flint and K. S. Suslick, “The temperature of cavitation,” Science 253, 1397-1399 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited