OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 1 — Jan. 1, 2010
  • pp: 71–79

Mountaintop observation of CO 2 absorption spectra using a short wavelength infrared Fourier transform spectrometer

Yukio Yoshida, Hiroyuki Oguma, Isamu Morino, Hiroshi Suto, Akihiko Kuze, and Tatsuya Yokota  »View Author Affiliations


Applied Optics, Vol. 49, Issue 1, pp. 71-79 (2010)
http://dx.doi.org/10.1364/AO.49.000071


View Full Text Article

Enhanced HTML    Acrobat PDF (1374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption spectra of surface-scattered solar radiation were measured from the top of Mount Tsukuba (altitude 833 m ) in the short wavelength infrared region using a Fourier transform spectrometer (FTS). The FTS used in this experiment was the breadboard model of the FTS on the Greenhouse Gases Observing Satellite, which was launched on 23 January 2009. In situ measurement of carbon dioxide ( CO 2 ) from a Cessna airplane was performed simultaneously with the FTS observation. The CO 2 column abundances were retrieved from the observed spectra under the assumption of the absence of aerosol. The retrieved CO 2 column abundances over a few minutes dispersed within 1%. The remaining bias was considered to be caused by the no-aerosol assumption.

© 2010 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 8, 2009
Revised Manuscript: September 3, 2009
Manuscript Accepted: September 25, 2009
Published: December 21, 2009

Citation
Yukio Yoshida, Hiroyuki Oguma, Isamu Morino, Hiroshi Suto, Akihiko Kuze, and Tatsuya Yokota, "Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer," Appl. Opt. 49, 71-79 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-1-71


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proc. Natl. Acad. Sci. USA 103, 14288-14293 (2006). [CrossRef] [PubMed]
  2. WMO World Data Centre for Greenhouse Gases, “WMO Global Atmosphere Watch World Data Centre for Greenhouse Gases,” http://gaw.kishou.go.jp/wdcgg/.
  3. P. J. Rayner and D. M. O'Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175-178 (2001). [CrossRef]
  4. P. K. Patra, S. Maksyutov, Y. Sasano, H. Nakajima, G. Inoue, and T. Nakazawa, “An evaluation of CO2 observations with solar occultation FTS for inclined-orbit satellite sensor for surface source inversion,” J. Geophys. Res. 108, 4759 (2003). [CrossRef]
  5. T. Yokota, H. Oguma, I. Morino, and G. Inoue, “2004: A nadir looking SWIR FTS to monitor CO2 column density for Japanese GOSAT project,” in Proceedings of the Twenty-Fourth International Symposium on Space Technology and Science (Selected Papers) (Japan Society for Aeronautical and Space Sciences, 2004), pp. 887-889.
  6. S. C. Olsen and J. T. Randerson, “Differences between surface and column atmospheric CO2 and implications for carbon cycle research,” J. Geophys. Res. 109, D02301 (2004). [CrossRef]
  7. A. Kuze and H. Suto, “TOKYO and TSUKUBA models--TANSO precursor experiments,” presented at the Twenty-Sixth International Symposium on Space Technology and Science, Hamamatsu, Japan, June 2008.
  8. H. Oguma, T. Yokota, I. Morino, H. Suto, Y. Yoshida, N. Eguchi, A. Kuze, and G. Inoue are preparing a manuscript to be called “Observations of CO2 absorption spectra using the airship-borne FTIR (GOSAT TANSO-FTS BBM) in SWIR spectral region.”
  9. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectr. Rad. Trans. 110, 533-572 (2009). [CrossRef]
  10. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000). [CrossRef]
  11. C. D. Rodgers and B. J. Connor, “Intercomparison of remote sounding instruments,” J. Geophys. Res. 108, 4116 (2003). [CrossRef]
  12. H. Matsueda, T. Machida, Y. Sawa, Y. Nakagawa, K. Hirotani, H. Ikeda, N. Kondo, and K. Goto, “Evaluation of atmospheric CO2 measurements from new flask air sampling of JAL airliner observations,” Pap. Met. Geophys. 59, 1-17 (2008). [CrossRef]
  13. T. Machida, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Japan (personal communication, 2006).
  14. B. J. Connor, H. Boesch, G. Toon, B. Sen, C. Miller, and D. Crisp, “Orbiting Carbon Observatory: inverse method and prospective error analysis,” J. Geophys. Res. 113, D05305(2008). [CrossRef]
  15. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (Air Force Geophysics Laboratory, 1979).
  16. G. Hanel, “The properties of atmospheric aerosol particles as functions of the relative humidity as a thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73-188 (1976). [CrossRef]
  17. Y. Ota, Y. Yoshida, and T. Yokota, “Study of retrieving column amount of carbon dioxide from satellite-based near-infrared observation of solar scattered light in clear sky condition: error estimation and optimization of vertical pressure grid,” J. Remote Sens. Soc. Japan 28, 152-160 (2008) (in Japanese with English abstract and figure captions).
  18. T. Nakajima and M. Tanaka, “Matrix formulations for the radiative transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectr. Rad. Trans. 35, 13-21 (1986). [CrossRef]
  19. R. L. Kurucz, “Synthetic infrared spectra,” in Infrared Solar Physics, International Astronomical Union Symposium 154, D.M.Rabin and J.T.Jefferies, eds. (Kluwer, 1994), pp. 523-531.
  20. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere,” (3rd ed.) Environmental Research Paper 411 (Air Force Cambridge Research Laboratories, 1972).
  21. W. Livingston and L. Wallace, “An atlas of the solar spectrum in the infrared from 1850 to 9000 cm−1 (1.1 to 5.4 μm),” in NSO Technical Report #91-001 (NSO, National Optical Astronomy Observatory, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited