OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1707–1719

Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance

Dmitry Yudovsky and Laurent Pilon  »View Author Affiliations

Applied Optics, Vol. 49, Issue 10, pp. 1707-1719 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to determine chromophore concentrations, blood saturation, and epidermal thickness of human skin from diffuse reflectance spectra. Human skin was approximated as a plane-parallel slab of variable thickness supported by a semi-infinite layer corresponding to the epidermis and dermis, respectively. The absorption coefficient was modeled as a function of melanin content for the epidermis and blood content and oxygen saturation for the dermis. The scattering coefficient and refractive index of each layer were found in the literature. Diffuse reflectance spectra between 490 and 620 nm were generated using Monte Carlo simulations for a wide range of melanosome volume fraction, epidermal thickness, blood volume, and oxygen saturation. Then, an inverse method was developed to retrieve these physiologically meaningful parameters from the simulated diffuse reflectance spectra of skin. A previously developed accurate and efficient semiempirical model for diffuse reflectance of two layered media was used instead of time-consuming Monte Carlo simulations. All parameters could be estimated with relative root-mean-squared error of less than 5% for (i) melanosome volume fraction ranging from 1% to 8%, (ii) epidermal thickness from 20 to 150 μm , (iii) oxygen saturation from 25% to 100%, (iv) blood volume from 1.2% to 10%, and (v) tissue scattering coefficient typical of human skin in the visible part of the spectrum. A similar approach could be extended to other two-layer absorbing and scattering systems.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.1870) Medical optics and biotechnology : Dermatology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 13, 2009
Revised Manuscript: February 25, 2010
Manuscript Accepted: March 1, 2010
Published: March 22, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Dmitry Yudovsky and Laurent Pilon, "Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance," Appl. Opt. 49, 1707-1719 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008). [CrossRef]
  2. W. M. Kuebler, “How NIR is the future in blood flow monitoring?,” J. Appl. Physiol. 104, 905-906 (2008). [CrossRef]
  3. R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50, 2573-2581 (2005). [CrossRef]
  4. L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. GiuriniT. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30, 903-910 (2007). [CrossRef]
  5. A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16, 131-135 (2008). [CrossRef]
  6. N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin from multi-visible spectral imaging by inverse optical scattering technique,” in Proceedings of the Eighth Color Imaging Conference: Color Science, Systems and Applications (Society for Imaging Science and Technology, 2000), pp. 444-450.
  7. N. Tsumura, H. Haneishi, and Y. Miyake, “Independent-component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169-2176 (1999). [CrossRef]
  8. A. Vogel, V. V. Chernomordik, J. D. Riley, M. Hassan, F. Amyot, B. Dasgeb, S. G. Demos, R. Pursley, R. F. Little, R. Yarchoan, T. Tao, and A. H. Gandjbakhche, “Using noninvasive multispectral imaging to quantitatively assess tissue vasculature,” J Biomed. Opt. 12, 051604 (2007). [CrossRef]
  9. N. Tsumura, R. Usuba, K. Takase, T. Nakaguchi, N. Ojima, N. Komeda, and Y. Miyake, “Image-based control of skin translucency,” Appl. Opt. 47, 6543-6549 (2008). [CrossRef]
  10. L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51, N91-N98 (2006). [CrossRef]
  11. N. Tsumura, T. Nakaguchi, N. Ojima, K. Takase, S. Okaguchi, K. Hori, and Y. Miyake, “Image-based control of skin melanin texture,” Appl. Opt. 45, 6626-6633 (2006). [CrossRef]
  12. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in-vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021-2028 (2002). [CrossRef]
  13. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54-68 (1995). [CrossRef]
  14. A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49, N255-N257 (2004). [CrossRef]
  15. M. F. Modest, Radiative Heat Transfer (Academic, 2003).
  16. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967-982 (1999). [CrossRef]
  17. A. M. K. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256-1267 (1998). [CrossRef]
  18. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410-7418 (1995). [CrossRef]
  19. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788 (1998). [CrossRef]
  20. R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50, 2573-2581 (2005). [CrossRef]
  21. J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31, 1949-1959 (2004). [CrossRef]
  22. E. Okada, M. Firbank, and D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093-2108 (1995). [CrossRef]
  23. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859-1876 (1993). [CrossRef]
  24. H. Gray, Gray's Anatomy (Bounty, 1977), pp. 1082-1085.
  25. R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193-208 (2002). [CrossRef]
  26. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981). [CrossRef]
  27. Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183-189 (2002). [CrossRef]
  28. M. C. Branchet, S. Boisnic, C. Frances, and A. M. Robert, “Skin thickness changes in normal aging skin,” Gerontology (Basel) 36, 28-35 (1990). [CrossRef]
  29. D. E. Barker, “Skin thickness in the human,” Plast. Reconstr. Surg. 7, 115-116 (1951). [CrossRef]
  30. K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,” Appl. Opt. 45, 4174-4183 (2006). [CrossRef]
  31. H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Monte Carlo modeling of tissue autofluorescence measurement and imaging,” Proc. SPIE 2135, 94-104 (1994). [CrossRef]
  32. L. Wang and S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” last accessed 31 March 2009, http://labs.seas.wustl.edu/bme/Wang/mcr5/Mcman.pdf.
  33. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).
  34. G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48, 3490-3496(2009). [CrossRef]
  35. D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48, 6670-6683 (2009). [CrossRef]
  36. N. Tsumura, D. Kawazoe, T. Nakaguchi, N. Ojima, and Y. Miyake, “Regression-based model of skin diffuse reflectance for skin color analysis,” Opt. Rev. 15, 292-294 (2008). [CrossRef]
  37. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129-138 (1996). [CrossRef]
  38. J. Wu, F. Partovi, M. S. Field, and R. P. Rava, “Diffuse reflectance from turbid media: an analytical model of photon migration,” Appl. Opt. 32, 1115-1121 (1993). [CrossRef]
  39. A. R. Young, “Chromophores in human skin,” Phys. Med. Biol. 42, 789-802 (1997). [CrossRef]
  40. T. Dwyer, G. Prota, L. Blizzard, R. Ashbolt, and M. R. Vincensi, “Melanin density and melanin type predict melanocytic naevi in 19-20 year olds of northern European ancestry,” Melanoma research 10, 387-394 (2000). [CrossRef]
  41. T. Dwyer, H. K. Muller, L. Blizzard, R. Ashbolt, and G. Phillips, “The use of spectrophotometry to estimate melanin density in Caucasians,” Cancer Epidemiol. Biomarkers Prev. 7, 203-206(1998).
  42. S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R.R.Alfano and J.G.Fujimoto, eds. (Optical Society of America, 1996), Vol. 2, pp. 364-370.
  43. M. Doi and S. Tominaga, “Spectral estimation of human skin color using the Kubelka-Munk theory,” Proc. SPIE 5008, 221-228 (2003). [CrossRef]
  44. R. Flewelling, “Noninvasive optical monitoring,” in The Biomedical Engineering Handbook, J.Bronzion, ed. (IEEE, 1981), pp. 1-11.
  45. I. V. Meglinski and S. J. Matcher, “Modeling of skin reflectance spectra,” Proc. SPIE , 4241, 78-87 (2001). [CrossRef]
  46. M. J. C. Van Gemert, A. J. Welch, W. M. Star, M. Motamedi, and W. F. Cheong, “Tissue optics for a slab geometry in the diffusion approximation,” Lasers Med. Sci. 2, 295-302 (1987). [CrossRef]
  47. W. F. Southwood, “The thickness of the skin,” Plast. Reconstr. Surg. 15, 423-429 (1955). [CrossRef]
  48. A. Krishnaswamy and G. V. G. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” in Computer Graphics Forum (Blackwell, 2004), Vol. 23, pp. 331-340.
  49. E. Angelopoulou, “Understanding the color of human skin,” Proc. SPIE 4299, 243-251 (2001). [CrossRef]
  50. P. Clarys, K. Alewaeters, R. Lambrecht, and A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter, the DermaSpectrometer and the Mexameter,” Skin Res. Technol. 6, 230-238 (2000). [CrossRef]
  51. T. Kono, A. R. Erçöçen, H. Nakazawa, T. Honda, N. Hayashi, and M. Nozaki, “The flashlamp-pumped pulsed dye laser (585 nm) treatment of hypertrophic scars in Asians,” Ann. Plast. Surg. 51, 366-371 (2003).
  52. H. J. Yoon, D. H. Lee, S. O. Kim, K. C. Park, and S. W. Youn, “Acne erythema improvement by long-pulsed 595 nm pulsed-dye laser treatment: A pilot study,” J. Derm. Treat. 19, 38-44(2008). [CrossRef]
  53. R. L. Greenman, S. Panasyuk, X. Wang, T. E. Lyons, T. Dinh, L. Longoria, J. M. Giurini, J. Freeman, L. Khaodhiar, and A. Veves, “Early changes in the skin microcirculation and muscle metabolism of the diabetic foot,” Lancet 366, 1711-1717(2005). [CrossRef]
  54. A. Nouvong, B. Hoogwerf, E. Mohler, B. Davis, A. Tajaddini, and E. Medenilla, “Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin,” Diabetes Care 32, 2056-2061 (2009). [CrossRef]
  55. J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83, 410-413 (2003). [CrossRef]
  56. T. Gambichler, J. Huyn, N. S. Tomi, G. Moussa, C. Moll, A. Sommer, P. Altmeyer, and K. Hoffmann, “A comparative pilot study on ultraviolet-induced skin changes assessed by noninvasive imaging techniques in vivo,” Photochem. Photobiol. 82, 1103-1107 (2006). [CrossRef]
  57. J. Lock-Andersen, P. Therkildsen, O. F. de Fine, M. Gniadecka, K. Dahlstrøm, T. Poulsen, and H. C. Wulf, “Epidermal thickness, skin pigmentation and constitutive photosensitivity,” Photodermatol. Photoimmunol. Photomed. 13, 153-158(1997).
  58. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145-152 (2006). [CrossRef]
  59. P. P. Guastalla, V. I. Guerci, A. Fabretto, F. Faletra, D. L. Grasso, E. Zocconi, D. Stefanidou, P. D'Adamo, L. Ronfani, M. Montico, M. Morgutti, and P. Gasparini, “Detection of epidermal thickening in GJB2 carriers with epidermal US,” Radiology (Oak Brook, Ill.) 251, 280-286 (2009). [CrossRef]
  60. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?,” Opt. Lett. 34, 1435-1437 (2009). [CrossRef]
  61. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005). [CrossRef]
  62. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Ann. Astrophys. 93, 70-83 (1940).
  63. M. J. C. Van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146-1154(1989). [CrossRef]
  64. S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309-334 (1987).
  65. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511-522 (2004). [CrossRef]
  66. I. Lux and L. Koblinger,Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, 6th ed. (CRC Press, 1991).
  67. M. J. C. van Gemert and W. M. Star, “Relations between the Kubelka-Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287-298 (1987).
  68. M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148-154(1989). [CrossRef]
  69. S. Y. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490-503 (1999). [CrossRef]
  70. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  71. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997). [CrossRef]
  72. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370-1376 (1992). [CrossRef]
  73. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005). [CrossRef]
  74. G. Vargas, E. K. Chan, J. K. Barton, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133-141 (1999). [CrossRef]
  75. I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates,” Ph.D. dissertation (Rice University, 1992).
  76. S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53, 769-775 (1991).
  77. S. Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/hemestruct/index.html, accessed 5 Oct. 2009.
  78. A. N. Yaroslavsky, A. V. Priezzhev, J. R. I. V. Yaroslavsky, and H. Battarbee, “Optics of blood,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE, 2002), pp. 169-216.
  79. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation.,” Biochim. Biophys. Acta Bioenerg. 933, 184-192 (1988). [CrossRef]
  80. A. P. Harris, M. J. Sendak, R. T. Donham, M. Thomas, and D. Duncan, “Absorption characteristics of human fetal hemoglobin at wavelengths used in pulse oximetry,” J. Clin. Monitor. Comput. 4, 175-177 (1988). [CrossRef]
  81. S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. bme-26, 656-664 (1979). [CrossRef]
  82. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431-441(1963). [CrossRef]
  83. C. Harle-Bachor and P. Boukamp, “Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes,” Proc. Natl. Acad. Sci. USA 93, 6476-6481 (1996). [CrossRef]
  84. D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Two-layer optical model of skin for early, non-invasive detection of wound development on the diabetic foot,” Proc. SPIE 7555, 755514 (2010). [CrossRef]
  85. J. S. Vande Berg and R. Rudolph, “Pressure (decubitus) ulcer: variation in histopathology--a light and electron microscope study,” Hum. Pathol. 26, 195-200 (1995). [CrossRef]
  86. A. J. Boulton, P. Meneses, and W. J. Ennis, “Diabetic foot ulcers: a framework for prevention and care,” Wound Repair Regen. 7, 7-16 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited