OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1720–1727

Study of azo dye surface command photoalignment material for photonics applications

Sarik R. Nersisyan, Nelson V. Tabiryan, Diane M. Steeves, Brian R. Kimball, Vladimir G. Chigrinov, and Hoi Sing Kwok  »View Author Affiliations

Applied Optics, Vol. 49, Issue 10, pp. 1720-1727 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (973 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide detailed quantitative characterization of sulfonic bisazodye SD1 as a photoalignment material for photonics applications. The reversibility of photoalignment was tested for transformations between planar and 90 ° twist orientation states in a liquid crystal (LC) cell using polarized UV light. No degradation was observed for 100 cycles of transformations. A given twist angle of the LC orientation was obtained in a single step, as well as in a sequence of gradually increasing angles. A hysteresis is revealed in the latter case for planar–twist–planar cycles. The material was used for obtaining patterned orientation of a LC polymer providing similarly good quality photoalignment for UV as well as visible light. High efficiency large area and high spatial frequency optical axis gratings (or, polarization gratings) were demonstrated on a polycarbonate substrate. We show the opportunity of obtaining photoalignment in a multilayer system with single exposure to a polarized light. Finally, we provide evidence of a positive feedback in the dynamics of photoalignment due to the orientational effect of an increasing number of aligned molecules.

© 2010 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.3710) Materials : Liquid crystals
(160.5335) Materials : Photosensitive materials

ToC Category:

Original Manuscript: November 11, 2009
Manuscript Accepted: February 20, 2010
Published: March 23, 2010

Sarik R. Nersisyan, Nelson V. Tabiryan, Diane M. Steeves, Brian R. Kimball, Vladimir G. Chigrinov, and Hoi Sing Kwok, "Study of azo dye surface command photoalignment material for photonics applications," Appl. Opt. 49, 1720-1727 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).
  2. K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847-1873 (2000). [CrossRef]
  3. K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).
  4. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995). [CrossRef]
  5. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996). [CrossRef]
  6. F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000). [CrossRef]
  7. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996). [CrossRef] [PubMed]
  8. M. Schadt and K. Schmitt, “Flat liquid crystal projectors with integrated cholesteric color filters/polarizers and photo-aligned optical retarders,” in Society for Information Display Proceedings of International Display Research Conference(Society for Information Display, 1997), Vol. IDRC97, 219-222.
  9. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  10. M. J. Escuti and W. M. Jones, “Polarization independent switching with high contrast from a liquid crystal polarization grating,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1443-1446.
  11. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009). [CrossRef]
  12. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989). [CrossRef]
  13. H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006). [CrossRef]
  14. Y. Y. Tzeng, S. W. Ke, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768-3775(2008). [CrossRef] [PubMed]
  15. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006). [CrossRef]
  16. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007). [CrossRef] [PubMed]
  17. G. A. Swartzlander Jr., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497-499 (2001). [CrossRef]
  18. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792-3805(2006). [CrossRef] [PubMed]
  19. I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007). [CrossRef]
  20. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475-5480 (2004). [CrossRef] [PubMed]
  21. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351-1353 (2002). [CrossRef]
  22. K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008). [CrossRef]
  23. V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.
  24. V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002). [CrossRef]
  25. O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007). [CrossRef]
  26. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558-10564 (2006). [CrossRef] [PubMed]
  27. X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.
  28. A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.
  29. Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987). [CrossRef]
  30. V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.
  31. S. Serak and N. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystals,” Proc. SPIE 6332, 63320Y (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited