OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1728–1733

Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects

Afshin Moradi  »View Author Affiliations

Applied Optics, Vol. 49, Issue 10, pp. 1728-1733 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derived simple sets of equations to describe the microwave response of the magnetized hydrogen plasma slab embedded inside carbon nanotubes, which were grown by iron-catalyzed high-pressure disproportionation. These equations, which are useful when interference effects due to multiple reflections between plasma film interfaces are small, were used to analyze the reflection, absorption, and transmission coefficients of the magnetized hydrogen plasma slab. A discussion on the effects of the continuously changing external magnetic field and hydrogen plasma parameters on the reflected power, absorbed power, and transmitted power in the system is presented.

© 2010 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(350.5400) Other areas of optics : Plasmas

ToC Category:

Original Manuscript: December 4, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: February 4, 2010
Published: March 23, 2010

Afshin Moradi, "Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects," Appl. Opt. 49, 1728-1733 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991). [CrossRef]
  2. G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998). [CrossRef]
  3. M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007). [CrossRef]
  4. A. Moradi and H. Khosravi, “Collective excitations in single-walled carbon nanotubes,” Phys. Rev. B 76, 113411 (2007). [CrossRef]
  5. A. Moradi and H. Khosravi, “Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation,” Phys. Lett. A 371, 1-6 (2007). [CrossRef]
  6. A. Moradi, “Electron-hole plasma excitations in single-walled carbon nanotubes,” Phys. Lett. A 372, 5614-5616 (2008). [CrossRef]
  7. A. Moradi, “Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media,” Opt. Commun. 283, 160-163 (2010). [CrossRef]
  8. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  10. C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000). [CrossRef]
  11. C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001). [CrossRef]
  12. J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004). [CrossRef]
  13. A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008). [CrossRef]
  14. Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008). [CrossRef]
  15. T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003). [CrossRef]
  16. A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003). [CrossRef]
  17. F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).
  18. Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006). [CrossRef]
  19. Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008). [CrossRef]
  20. A. Moradi, “Microwave absorption of magnetized hydrogen plasma in carbon nanotubes,” Phys. Plasmas 16, 113501(2009). [CrossRef]
  21. K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (Springer-Verlag, 2005).
  22. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390-14396 (2008). [CrossRef] [PubMed]
  23. K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).
  24. K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited