OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1739–1743

Deep-etched sinusoidal polarizing beam splitter grating

Jijun Feng, Changhe Zhou, Hongchao Cao, and Peng Lv  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. 1739-1743 (2010)
http://dx.doi.org/10.1364/AO.49.001739


View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the 1 st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient ( > 95.98 % ) over the O-band wavelength range ( 1260 1360 nm ) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.4510) Fiber optics and optical communications : Optical communications
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 2, 2009
Revised Manuscript: February 2, 2010
Manuscript Accepted: March 5, 2010
Published: March 24, 2010

Citation
Jijun Feng, Changhe Zhou, Hongchao Cao, and Peng Lv, "Deep-etched sinusoidal polarizing beam splitter grating," Appl. Opt. 49, 1739-1743 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-1739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Li and J. A. Dobrowolski, “High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39, 2754-2771 (2000). [CrossRef]
  2. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215-219 (1999). [CrossRef]
  3. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007). [CrossRef] [PubMed]
  4. D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Opt. 43, 6157-6165 (2004). [CrossRef] [PubMed]
  5. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008). [CrossRef] [PubMed]
  6. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  7. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005). [CrossRef]
  8. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448-10456 (2005). [CrossRef] [PubMed]
  9. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007). [CrossRef] [PubMed]
  10. J. Zheng, C. Zhou, B. Wang, and J. Feng, “Beam splitting of low-contrast binary gratings under second Bragg angle incidence,” J. Opt. Soc. Am. A 25, 1075-1083 (2008). [CrossRef]
  11. J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298-5301 (2008). [CrossRef]
  12. J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lv, “Design and fabrication of a polarization-independent two-port beam splitter,” Appl. Opt. 48, 5636-5641 (2009). [CrossRef] [PubMed]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  14. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  15. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638-6643 (2008). [CrossRef] [PubMed]
  16. J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lv, “Dual-function beam splitter of a subwavelength fused-silica grating,” Appl. Opt. 48, 2697-2701 (2009). [CrossRef] [PubMed]
  17. K.-X. Sun, P. Lu, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Characterization of polarization sensitive, high efficiency dielectric gratings for formation flight interferometry,” J. Phys. Conf. Ser. 154, 012031(2009). [CrossRef]
  18. P. P. Lu, K.-X. Sun, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle,” Opt. Lett. 34, 1708-1710(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited