OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1809–1817

Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device

Shoken Ishii, Kohei Mizutani, Hirotake Fukuoka, Takayoshi Ishikawa, Baron Philippe, Hironari Iwai, Tetsuo Aoki, Toshikazu Itabe, Atsushi Sato, and Kazuhiro Asai  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. 1809-1817 (2010)
http://dx.doi.org/10.1364/AO.49.001809


View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A coherent 2 μm differential absorption and wind lidar (Co2DiaWiL) was developed to measure CO 2 concentration and line-of-sight wind speed. We conductively cooled a pumping laser head to 80 ° C and diode arrays to approximately 20 ° C . A Q-switched laser outputs an energy of 80 mJ (pulse width 150 ns (FWHM), pulse repetition frequency up to 30 Hz ). CO 2 measurements made over a column range ( 487 1986 m ) for 5 min accumulation time pairs achieved 0.7% precision. Line-of-sight wind speeds for ranges up to approximately 20 km and returns from a mountainside located 24 km away from the Co2DiaWiL were obtained.

© 2010 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3560) Lasers and laser optics : Lasers, ring
(140.3580) Lasers and laser optics : Lasers, solid-state
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 9, 2009
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 8, 2010
Published: March 25, 2010

Citation
Shoken Ishii, Kohei Mizutani, Hirotake Fukuoka, Takayoshi Ishikawa, Baron Philippe, Hironari Iwai, Tetsuo Aoki, Toshikazu Itabe, Atsushi Sato, and Kazuhiro Asai, "Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device," Appl. Opt. 49, 1809-1817 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-1809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Crutzen, “Geology of mankind,” Nature 415, 23 (2002). [CrossRef] [PubMed]
  2. D. M. Etheridge, L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, and V. I. Morgan, “Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn,” J. Geophys. Res. 101(D2), 4115-4128 (1996). [CrossRef]
  3. I. C. Prentice, G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. Le Quéré, R. J. Scholes, D. W. R. Wallace, D. Archer, M. R. Ashmore, O. Aumont, D. Baker, M. Battle, M. Bender, L. P. Bopp, P. Bousquet, K. Caldeira, P. Ciais, P. M. Cox, W. Cramer, F. Dentener, I. G. Enting, C. B. Field, P. Friedlingstein, E. A. Holland, R. A. Houghton, J. I. House, A. Ishida, A. K. Jain, I. A. Janssens, F. Joos, T. Kaminski, C. D. Keeling, R. F. Keeling, D. W. Kicklighter, K. E. Kohfeld, W. Knorr, R. Law, T. Lenton, K. Lindsay, E. Maier-Reimer, A. C. Manning, R. J. Matear, A. D. McGuire, J. M. Melillo, R. Meyer, M. Mund, J. C. Orr, S. Piper, K. Plattner, P. J. Rayner, S. Sitch, R. Slater, S. Taguchi, P. P. Tans, H. Q. Tian, M. F. Weirig, T. Whorf, and A. Yool, The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: the Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2001), pp. 185-237. [PubMed]
  4. P. J. Rayner and D. M. O'Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175-178 (2001). [CrossRef]
  5. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide,” Appl. Opt. 43, 914-927 (2004). [CrossRef] [PubMed]
  6. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007). [CrossRef]
  7. F. Chevallier, F.-M. Bréon, and P. J. Rayner, “Contribution of the orbiting carbon observatory to the estimation of CO2 sources and sinks: theoretical study in a variational data assimilation framework,” J. Geophys. Res. 112, D09307 (2007). [CrossRef]
  8. T. Hamazaki, Y. Kaneko, A. Kuze, and K. Kondo, “Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT),” Proc. SPIE 5659, 73-80 (2005). [CrossRef]
  9. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092-5099 (2004). [CrossRef] [PubMed]
  10. G. J. Koch, J. Y. Beyon, F. Gilbert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, F. J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944-956 (2008). [CrossRef] [PubMed]
  11. F. Gilbert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45, 4448-4458 (2006). [CrossRef]
  12. F. Gilbert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477-1499 (2008). [CrossRef]
  13. A. Anediek, A. Fix, M. Wirth, and G. Hert, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295-302 (2008). [CrossRef]
  14. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48, 748-757 (2009). [CrossRef] [PubMed]
  15. C. D. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Ocean. Technol. 18, 376-393 (2001). [CrossRef]
  16. K. Mizutani, T. Itabe, S. Ishii, T. Aoki, K. Asai, A. Sato, H. Fukuoka, and T. Ishikawa, “Conductive-cooled 2 micron laser for CO2 and wind observations,” Proc. SPIE 7153, 71530J1-71530J8 (2008).
  17. S. Ishii, K. Mizutani, T. Itabe, T. Aoki, H. Fukuoka, T. Ishikawa, K. Asai, and A. Sato, “Coherent differential absorption lidar for atmospheric CO2 measurement,” in 14th Coherent Laser Radar Conference (Universities Space Research Association, 2007).
  18. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569-6577(2003). [CrossRef] [PubMed]
  19. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B. 90, 593-608 (2008). [CrossRef]
  20. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715-717(1986). [CrossRef] [PubMed]
  21. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491-3499 (1997). [CrossRef] [PubMed]
  22. R. Frehlich, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309 (personal communication, 2009).
  23. R. J. Doviak and D. S. Zrnić, Doppler Radar and Weather Observations (Academic, 2002).
  24. D. K. Killinger and N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968-970 (1981). [CrossRef]
  25. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Tranfer. 110, 533-572 (2009). [CrossRef]
  26. L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer. 101, 325-338 (2006). [CrossRef]
  27. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. -M. Flaud, R. R. Gamache, A. Goldman, J. -M. Hartmann, K. W. Jucks, A. G. Maki, J. -Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Tranfer. 96, 139-204 (2005). [CrossRef]
  28. P. Chintawongvanich, R. Olsen, and C. A. Biltoft, “Intercomparison of wind measurements from two acoustic Doppler sodars, a laser Doppler lidar, and in situ sensors,” J. Atmos. Ocean. Technol. 6, 785-797 (1989). [CrossRef]
  29. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm Coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517-1528 (1994). [CrossRef]
  30. S. A. Cohn and R. K. Goodrich, “Radar wind profiler radial velocity: a comparison with Doppler lidar,” J. Appl. Meteorol. 41, 1277-1282 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited