OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1838–1844

Experimental generation of Laguerre–Gaussian beam using digital micromirror device

Yu-Xuan Ren, Ming Li, Kun Huang, Jian-Guang Wu, Hong-Fang Gao, Zi-Qiang Wang, and Yin-Mei Li  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. 1838-1844 (2010)
http://dx.doi.org/10.1364/AO.49.001838


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A digital micromirror device (DMD) modulates laser intensity through computer control of the device. We experimentally investigate the performance of the modulation property of a DMD and optimize the modulation procedure through image correction. Furthermore, Laguerre–Gaussian (LG) beams with different topological charges are generated by projecting a series of forklike gratings onto the DMD. We measure the field distribution with and without correction, the energy of LG beams with different topological charges, and the polarization property in sequence. Experimental results demonstrate that it is possible to generate LG beams with a DMD that allows the use of a high-intensity laser with proper correction to the input images, and that the polarization state of the LG beam differs from that of the input beam.

© 2010 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.3300) Lasers and laser optics : Laser beam shaping
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Optical Devices

History
Original Manuscript: December 9, 2009
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 6, 2010
Published: March 25, 2010

Citation
Yu-Xuan Ren, Ming Li, Kun Huang, Jian-Guang Wu, Hong-Fang Gao, Zi-Qiang Wang, and Yin-Mei Li, "Experimental generation of Laguerre-Gaussian beam using digital micromirror device," Appl. Opt. 49, 1838-1844 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-1838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lin, X.-C. Yuan, S. H. Tao, and R. Burge, “Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states,” Appl. Opt. 46, 4680-4685 (2007). [CrossRef]
  2. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001). [CrossRef]
  3. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006). [CrossRef]
  4. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991-4999 (2008). [CrossRef]
  5. G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese). [CrossRef]
  6. Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010). [CrossRef]
  7. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995). [CrossRef]
  8. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008). [CrossRef]
  9. A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008). [CrossRef]
  10. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001). [CrossRef]
  11. Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).
  12. D. Pal Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378-1383 (2008). [CrossRef]
  13. R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt. 47, 6300-6306 (2008). [CrossRef]
  14. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548-3553 (2004). [CrossRef]
  15. L. J. Hornbeck, “From cathode rays to digital micromirrors: a history of electronic projection display technology,” Tex. Instrum. Tech. J. 7-46 (1998).
  16. C.-M. Chang and H.-P. D. Shieh, “Design of illumination and projection optics for projectors with single digital micromirror devices,” Appl. Opt. 39, 3202-3208 (2000). [CrossRef]
  17. Y. Lu and S. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92, 041109 (2008). [CrossRef]
  18. I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003). [CrossRef]
  19. M. Liang, R. L. Stehr, and A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751-753 (1997). [CrossRef]
  20. N. A. Riza and F. N. Ghauri, “Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDtrade),” Rev. Sci. Instrum. 76, 095102 (2005). [CrossRef]
  21. D. R. Collins, J. B. Sampsell, L. J. Hornbeck, J. M. Florence, P. A. Penz, and M. T. Gately, “Deformable mirror device spatial light modulators and their applicability to optical neural networks,” Appl. Opt. 28, 4900-4907 (1989). [CrossRef]
  22. E. P. Wagner, B. W. Smith, S. Madden, J. D. Winefordner, and M. Mignardi, “Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulator,” Appl. Spectrosc. 49, 1715-1719 (1995). [CrossRef]
  23. T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Dynamic axial-position control of a laser-trapped particle by wavefront modification,” Opt. Lett. 28, 465-467 (2003). [CrossRef]
  24. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009). [CrossRef]
  25. A. A. Adeyemi, N. Barakat, and T. E. Darcie, “Application of digital micro-mirror devices to digital optical microscope dynamic range enhancement,” Opt. Express 17, 1831-1843 (2009). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
  27. L. G. Schulz, “The optical constants of silver, gold, copper, and aluminum. i. The absorption coefficient k,” J. Opt. Soc. Am. 44, 357-362 (1954). [CrossRef]
  28. L. G. Schulz and F. R. Tangherlini, “Optical constants of silver, gold, copper, and aluminum. ii. The index of refraction n,” J. Opt. Soc. Am. 44, 362-368 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited