OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1880–1885

Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump

Dick T. Co, Jenny V. Lockard, David W. McCamant, and Michael R. Wasielewski  »View Author Affiliations

Applied Optics, Vol. 49, Issue 10, pp. 1880-1885 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Narrow-bandwidth ( 27 cm 1 ) tunable picosecond pulses from 480 nm 780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femto second NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

© 2010 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Nonlinear Optics

Original Manuscript: December 3, 2009
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 4, 2010
Published: March 26, 2010

Dick T. Co, Jenny V. Lockard, David W. McCamant, and Michael R. Wasielewski, "Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump," Appl. Opt. 49, 1880-1885 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998). [CrossRef]
  2. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22,1494-1496 (1997). [CrossRef]
  3. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth” Appl. Phys. Lett. 72, 147-149 (1998). [CrossRef]
  4. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23, 1283-1285 (1998). [CrossRef]
  5. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003). [CrossRef]
  6. S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using type II β-barium borate,” Opt. Lett. 20, 1394-1396 (1995). [CrossRef] [PubMed]
  7. D. K. Hore, J. L. King, F. G. Moore, D. S. Alavi, M. Y. Hamamoto, and G. L. Richmond, “Ti:sapphire-based picosecond visible-infrared sum-frequency spectroscopy from 900-3100 cm-1,” Appl. Spectrosc. 58, 1377-1384 (2004). [CrossRef] [PubMed]
  8. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007). [CrossRef]
  9. Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008). [CrossRef]
  10. N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007). [CrossRef] [PubMed]
  11. J. A. McGuire, W. Beck, X. Wei, and Y. R. Shen, “Fourier-transform sum-frequency surface vibrational spectroscopy with femtosecond pulses,” Opt. Lett. 24, 1877-1879(1999). [CrossRef]
  12. J. C. Deak, L. K. Iwaki, and D. D. Dlott, “High-power picosecond mid-infrared optical parametric amplifier for infrared Raman spectroscopy,” Opt. Lett. 22, 1796-1798 (1997). [CrossRef]
  13. I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).
  14. L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994). [CrossRef]
  15. D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: 3D infrared Raman spectroscopy,” Chem. Phys. 266, 149-166 (2001). [CrossRef]
  16. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653-667 (2000). [CrossRef]
  17. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006). [CrossRef]
  18. M. Muller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156(2007). [CrossRef] [PubMed]
  19. D. C. Urbanek and M. A. Berg, “Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations,” J. Chem. Phys. 127, 044306 (2007). [CrossRef] [PubMed]
  20. X. S. Xie, J.-X. Cheng, and E. O. Potma, “Coherent anti-Stokes Raman scattering microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.Pawley, ed. (Springer, 2006), p. 595. [CrossRef]
  21. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004). [CrossRef]
  22. J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009). [CrossRef] [PubMed]
  23. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007). [CrossRef]
  24. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006). [CrossRef]
  25. T. C. Gunaratne, M. Milliken, J. R. Challa, and M. C. Simpson, “Tunable ultrafast infrared/visible laser to probe vibrational dynamics,” Appl. Opt. 45, 558-564 (2006). [CrossRef] [PubMed]
  26. M. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15, 8884-8891 (2007). [CrossRef] [PubMed]
  27. J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990). [CrossRef]
  28. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758-1764 (1993). [CrossRef]
  29. L. Y. Zhu, J. Kim, and R. A. Mathies, “Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision,” J. Raman Spectrosc. 30, 777-783 (1999). [CrossRef]
  30. M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998). [CrossRef]
  31. Y. Uesugi, Y. Mizutani, and T. Kitagawa, “Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy,” Rev. Sci. Instrum. 68, 4001-4008 (1997). [CrossRef]
  32. Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000). [CrossRef]
  33. S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008). [CrossRef]
  34. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006). [CrossRef]
  35. S. Reisner and M. Gutmann, “Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers,” J. Opt. Soc. Am. B 16, 1801-1813(1999). [CrossRef]
  36. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
  37. L. Shen and D. Fan, “Theoretical research on noncollinear match conditions of the type I optical parametric process,” J. Opt. Soc. Am. B 24, 90-93 (2007). [CrossRef]
  38. K. Kato, “Second-harmonic generation to 2048 A in beta-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986). [CrossRef]
  39. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23, 59-64(1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited