OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: 1886–1899

Development of image mappers for hyperspectral biomedical imaging applications

Robert T. Kester, Liang Gao, and Tomasz S. Tkaczyk  »View Author Affiliations

Applied Optics, Vol. 49, Issue 10, pp. 1886-1899 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new design and fabrication method is presented for creating large-format ( > 100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective’s pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of < 1 mrad , and an average roughness of 5.4 nm .

© 2010 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.0180) Microscopy : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: September 28, 2009
Revised Manuscript: March 8, 2010
Manuscript Accepted: March 9, 2010
Published: March 26, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Robert T. Kester, Liang Gao, and Tomasz S. Tkaczyk, "Development of image mappers for hyperspectral biomedical imaging applications," Appl. Opt. 49, 1886-1899 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996). [CrossRef]
  2. J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998). [CrossRef]
  3. F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004). [CrossRef]
  4. J. Allington-Smith, “Basic principles of integral field spectroscopy,” New Astron. Rev. 50, 244-251 (2006). [CrossRef]
  5. R. Content, “Slicer system of KMOS,” New Astron. Rev. 50, 374-377 (2006). [CrossRef]
  6. M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006). [CrossRef]
  7. F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006). [CrossRef]
  8. S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45, 093001(2006). [CrossRef]
  9. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293-12308 (2009). [CrossRef] [PubMed]
  10. S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008). [CrossRef]
  11. C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003). [CrossRef]
  12. C. M. Dubbeldam and D. J. Robertson, “Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications,” Proc. SPIE 6149, 61490R (2006). [CrossRef]
  13. J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006). [CrossRef]
  14. S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003). [CrossRef]
  15. W. Preuss and K. Rickens, “Precision machining of integral field units,” New Astron. Rev. 50, 332-336 (2006). [CrossRef]
  16. R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004). [CrossRef]
  17. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  18. M. Pluta, Advanced Light Microscopy (Elsevier, 1988), Vol. 1.
  19. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9, 444-453 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited