OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: B26–B39

Point spread function engineering for iris recognition system design

Amit Ashok and Mark A. Neifeld  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. B26-B39 (2010)
http://dx.doi.org/10.1364/AO.49.000B26


View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 × 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple sub pixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.

© 2010 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(110.1758) Imaging systems : Computational imaging
(100.3008) Image processing : Image recognition, algorithms and filters
(100.4995) Image processing : Pattern recognition, metrics

History
Original Manuscript: September 3, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 22, 2010
Published: February 19, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Amit Ashok and Mark A. Neifeld, "Point spread function engineering for iris recognition system design," Appl. Opt. 49, B26-B39 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-B26


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148-1161 (1993). [CrossRef]
  2. J. G. Daugman, “The importance of being random: statistical principles of iris recognition,” Pattern Recogn. 36, 279-291(2003). [CrossRef]
  3. J. G. Daugman, “How iris recognition works,” IEEE Trans. Circ. Syst. Video Tech. 14, 21-30 (2004). [CrossRef]
  4. R. Barnard, V. P. Pauca, T. C. Torgersen, R. J. Plemmons, S. Prasad, J. van der Gracht, J. Nagy, J. Chung, G. Behrmann, S. Mathews, and M. Mirotznik, “High-resolution iris image reconstruction from low-resolution imagery,” Proc. SPIE 6313, 63130D (2006). [CrossRef]
  5. R. Narayanswamy, P. E. X. Silveira, H. Setty, V. P. Pauca, and J. van der Gracht, “Extended depth-of-field iris recognition system for a workstation environment,” Proc. SPIE 5779, 41-50 (2005). [CrossRef]
  6. R. Narayanswamy, G. E. Johnson, P. E. X. Silveira, and H. B. Wach, “Extending the imaging volume for biometric iris recognition,” Appl. Opt. 44, 701-712 (2005). [CrossRef] [PubMed]
  7. D. S. Barwick, “Increasing the information acquisition volume in iris recognition systems,” Appl. Opt. 47, 4684-4691(2008). [CrossRef] [PubMed]
  8. V. P. Pauca, D. Chen, J. van der Gracht, R. J. Plemmons, S. Prasad, and T. C. Torgersen, “Pupil phase encoding for multi-aperture imaging,” Proc. SPIE 7074, 70740D (2008). [CrossRef]
  9. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652-654 (1977). [CrossRef]
  10. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001). [CrossRef]
  11. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719-1727 (2004). [CrossRef] [PubMed]
  12. S. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice-Hall, 1993).
  13. CASIA-IrisV1 database, http://www.cbsr.ia.ac.cn/IrisDatabase.htm.
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chap. 7.
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, 1989), Chap. 9.
  16. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-Interscience, 2004), Chaps. 7 and 15.
  17. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, 1977).
  18. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2001).
  19. C. L. Fales, F. O. Huck, and R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872-888 (1984). [CrossRef] [PubMed]
  20. Y. Itakura, S. Tsutsumi, and T. Takagi, “Statistical properties of the background noise for the atmospheric windows in the intermediate infrared region,” Infrared Phys. 14, 17-29(1974). [CrossRef]
  21. N. X. Nguyen, “Numerical algorithms for image superresolution,” Ph. D. dissertation (Stanford University, 2000).
  22. L. Masek, “Recognition of human iris patterns for biometric identification,” Technical report (University of Western Australia, 2003).
  23. S. Sanderson and J. Erbetta, “Authentication for secure environments based on iris scanning technology,” in IEE Colloquium on Visual Biometrics (IEEE, 2000), pp. 8/1-8/7.
  24. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. 4, 2379-2394 (1987). [CrossRef]
  25. W. Wenzel and K. Hamacher, “A stochastic tunneling approach for global minimization,” Phys. Rev. Lett. 82, 3003-3007(1999). [CrossRef]
  26. MPI 1.1 standard, http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.
  27. S. Prasad, “Digital superresolution and the generalized sampling theorem,” J. Opt. Soc. Am. A 24, 311-325(2007). [CrossRef]
  28. E. Y. Lam, “Noise in superresolution reconstruction,” Opt. Lett. 28, 2234-2236 (2003). [CrossRef] [PubMed]
  29. M. D. Robinson and D. G. Stork, “Joint digital-optical design of superresolution multiframe imaging systems,” Appl. Opt. 47, B11-B20 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited