OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: B40–B50

What can we learn from the shape of a correlation peak for position estimation?

Abdul Ahad S. Awwal  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. B40-B50 (2010)
http://dx.doi.org/10.1364/AO.49.000B40


View Full Text Article

Enhanced HTML    Acrobat PDF (802 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Matched filtering is a robust technique to identify and locate objects in the presence of noise. Traditionally, the amplitude of the correlation peak is used for detection of a match. However, when distinguishing objects that are not significantly different or detecting objects under high noise imaging conditions, the normalized peak amplitude alone may not provide sufficient discrimination. In this paper, we demonstrate that measurements derived from the shape of the correlation peak offer not only higher levels of discrimination but also accurate position estimation. To our knowledge, this is the first time such features have been used in a real-time system, like the National Ignition Facility, where such techniques enable real-time, accurate position estimation and alignment under challenging imaging conditions. It is envisioned that systems utilizing matched filtering will greatly benefit from incorporating additional shape based information.

© 2010 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.3008) Image processing : Image recognition, algorithms and filters
(100.4999) Image processing : Pattern recognition, target tracking

History
Original Manuscript: September 3, 2009
Revised Manuscript: January 5, 2010
Manuscript Accepted: January 21, 2010
Published: February 25, 2010

Citation
Abdul Ahad S. Awwal, "What can we learn from the shape of a correlation peak for position estimation?," Appl. Opt. 49, B40-B50 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-B40


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. I. Moses, “Overview of the National Ignition Facility,” Fusion Sci. Technol. 54, 361-366 (2008).
  2. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004). [CrossRef]
  3. K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486-490. http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF
  4. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276-3303(2007). [CrossRef] [PubMed]
  5. W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227-232 (2004). [CrossRef]
  6. A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, pp. 233-242 (2004). [CrossRef]
  7. A. A. S. Awwal, “Automatic identification of templates in matched filtering,” Proc. SPIE 5556, 102-109 (2004). [CrossRef]
  8. A. A. S. Awwal, “Multi-object feature detection and error correction for NIF automatic optical alignment,” Proc. SPIE 6310, 63100Q (2006). [CrossRef]
  9. A. A. S. AwwalKenneth L. Rice and Tarek M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009). [CrossRef]
  10. A. A. S. Awwal, Wilbert A. McClay, Walter S. Ferguson, James V. Candy, Thad Salmon, and Paul Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038-3048 (2006). [CrossRef] [PubMed]
  11. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964). [CrossRef]
  12. J. L. Horner and J. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609-611 (1985). [CrossRef] [PubMed]
  13. A. A. S. Awwal, M. A. Karim, and S. R. Jahan, “Improved correlation discrimination using an amplitude-modulated phase-only filter,” Appl. Opt. 29, 2107-2112 (1990). [CrossRef] [PubMed]
  14. M. A. Karim and A. A. S. Awwal, Optical Computing: An Introduction (Wiley, 1992).
  15. K. M. Iftekharuddin, M. A. Karim, and A. A. S. Awwal, “Optimization of amplitude modulated inverse filter,” Math. Comput. Model. 24, 103-112 (1996). [CrossRef]
  16. K. M. Iftekharuddin, M. A. Karim, P. W. Eloe, and A. A. S. Awwal, “Discretized amplitude-modulated phase-only filter,” Opt. Laser Technol. 28, 93-100 (1996). [CrossRef]
  17. B. V. K. V. Kumar, F. M. Dickey, and J. M. Delaurentis, “Correlation filters minimizing peak location errors,” J. Opt. Soc. Am. A 9, 678-682 (1992). [CrossRef]
  18. S. Chang and C. P. Grover, “Centroid detection based on optical correlation,” Opt. Eng. 41, 2479-2486 (2002). [CrossRef]
  19. B. V. K. Vijay Kumar and L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997-3006 (1990). [CrossRef]
  20. Karl S. Gudmundsson and A. A. S. Awwal, “Sub-imaging technique to improve POF search capability,” Appl. Opt. 42, 4709-4717 (2003). [CrossRef] [PubMed]
  21. A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Hardware accelerated optical alignment of lasers using beam-specific matched-filters,” Appl. Opt. 48, 5190-5196 (2009). [CrossRef] [PubMed]
  22. T. Wolf, B. Gutman, H. Weber, J. Ferre-Borrull, S. Bosch, and S. Vallmitjana, “Application of fuzzy-rule-based postprocessing to correlation methods in pattern recognition,” Appl. Opt. 35, 6955-6963 (1996). [CrossRef] [PubMed]
  23. R. S. Carpari, “Method of target detection in images by moment analysis of correlation peaks,” Appl. Opt. 38, 1317-1324 (1999). [CrossRef]
  24. P. C. Miller and R. S. Carpari, “Demonstration of improved automatic target-recognition performances by moment analysis of correlation peaks,” Appl. Opt. 38, 1325-1331 (1999). [CrossRef]
  25. A. Mahalanobis and D. P. Casasent, “Performance evaluation of minimum average correlation energy filters,” Appl. Opt. 30, 561-572 (1991). [CrossRef] [PubMed]
  26. P. Refregier, B. Javidi, and G. Zhang, “Minimum mean-square-error filter for pattern recognition with spatially disjoint signal and scene noise,” Opt. Lett. 18, 1453-1455 (1993). [CrossRef] [PubMed]
  27. F. Goudail and P. Refregier, “Optimal and suboptimal detection of target with random grey levels imbedded in non-overlapping noise,” Opt. Commun. 125, 211-216 (1996). [CrossRef]
  28. A. Mahalanobis and B. V. K. V. Kumar, “Optimality of the maximum average correlation height filters for detection of targets in noise,” Opt. Eng. 36, 2642-2648 (1997). [CrossRef]
  29. R. A. Kerekes and B. V. K. V. Kumar, “Selecting a composite correlation filter design: a survey and comparative study,” Opt. Eng. 47, 067202 (2008) [CrossRef]
  30. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited