OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 10 — Apr. 1, 2010
  • pp: B59–B70

Identification of fluorescent beads using a coded aperture snapshot spectral imager

Christy Fernandez Cull, Kerkil Choi, David J. Brady, and Tim Oliver  »View Author Affiliations


Applied Optics, Vol. 49, Issue 10, pp. B59-B70 (2010)
http://dx.doi.org/10.1364/AO.49.000B59


View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply a coded aperture snapshot spectral imager (CASSI) to fluorescence microscopy. CASSI records a two-dimensional (2D) spectrally filtered projection of a three-dimensional (3D) spectral data cube. We minimize a convex quadratic function with total variation (TV) constraints for data cube estimation from the 2D snapshot. We adapt the TV minimization algorithm for direct fluorescent bead identification from CASSI measurements by combining a priori knowledge of the spectra associated with each bead type. Our proposed method creates a 2D bead identity image. Simulated fluorescence CASSI measurements are used to evaluate the behavior of the algorithm. We also record real CASSI measurements of a ten bead type fluorescence scene and create a 2D bead identity map. A baseline image from filtered-array imaging system verifies CASSI’s 2D bead identity map.

© 2010 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(110.1758) Imaging systems : Computational imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

History
Original Manuscript: October 1, 2009
Revised Manuscript: January 12, 2010
Manuscript Accepted: January 29, 2010
Published: March 2, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Christy Fernandez Cull, Kerkil Choi, David J. Brady, and Tim Oliver, "Identification of fluorescent beads using a coded aperture snapshot spectral imager," Appl. Opt. 49, B59-B70 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-B59


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. Hayhurst, D. Mabry, M. Sivjee, and J. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” Proc. SPIE 2819, 102-107 (1996). [CrossRef]
  2. A. Goetz, G. Vane, J. Solomon, and B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147-1153(1985). [CrossRef] [PubMed]
  3. C. Stellman, F. Olchowski, and J. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral over-head real-time surveillance experiment,” Proc. SPIE 4379, 339-346 (2001). [CrossRef]
  4. F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyperspectral microscopic analysis between normal, benign and carcinoma microarray tissue sections,” Proc. SPIE 6091, 60910I (2006). [CrossRef]
  5. M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag. 21, 104-117 (2002). [CrossRef] [PubMed]
  6. W. Vermaas, J. Timlin, H. Jones, M. Sinclair, L. Nieman, S. Hamad, D. Melgaard, and D. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. USA 105, 4050-4055 (2008). [CrossRef] [PubMed]
  7. M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817-4826 (1995). [CrossRef] [PubMed]
  8. P. Mouroulis, R. Green, and T. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210-2220 (2000). [CrossRef]
  9. L. Li, X. Qi, X. Hai, and Z. Fa, “Study on microscope hyperspectral medical imaging method for biomedical quantitative analysis,” Chin. Sci. Bull. 53, 1431-1434 (2008). [CrossRef]
  10. S. Gebhart, R. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt. 46, 1896-1910 (2007). [CrossRef] [PubMed]
  11. T. Vo-Dinh, B. Cullum, and P. Kasili, “Development of a multi-spectral imaging system for medical applications,” J. Phys. D 36, 1663-1668 (2003). [CrossRef]
  12. A. Harvey, D. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005). [CrossRef]
  13. W. Johnson, D. W. W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007). [CrossRef] [PubMed]
  14. L. Gao, R. T. Kester, and T. Tkaczyk, “Compact image slicing spectrometer (iss) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293-12308 (2009). [CrossRef] [PubMed]
  15. M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Appl. Opt. 45, 2965-2974(2006). [CrossRef] [PubMed]
  16. M. Gehm, R. John, D. Brady, R. Willet, and T. Schultz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013-14027 (2007). [CrossRef] [PubMed]
  17. C. Fernandez, A. Wagadarikar, D. Brady, S. McCain, and T. Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” Proc. SPIE 7184, 71840Z (2009). [CrossRef]
  18. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(7), 118-121 (2007). [CrossRef]
  19. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509(2006). [CrossRef]
  20. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992-3004(2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited