OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2054–2058

X-ray diffraction effect from surface acoustic waves traveling on a deposited multilayer

Jun Dong, Jianxia Qi, and Runcai Miao  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2054-2058 (2010)
http://dx.doi.org/10.1364/AO.49.002054


View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the x-ray diffraction effects from surface acoustic waves (SAW) traveling along a multilayer. The diffraction intensity distribution depends on the incidence angle and the multilayer SAW (MLSAW) amplitude. Particularly, a small departure deviating from the Bragg incidence angle at a certain amplitude will produce a larger variation of the intensity distribution. This shows that the diffraction intensity from MLSAW has an extremely high sensitivity to the Bragg incidence angle, which is different from a SAW traveling along a solid surface without deposited layers. By carefully analyzing the relationship between the intensity distribution I and the incidence angle θ, the corresponding analytic expression of the intensity distribution is theoretically derived. Our theoretical prediction is in great agreement with the experimental results previously obtained. A theoretical model that can be applied to study the x-ray diffraction effect from MLSAW is developed. The extremely high sensitivity to the Bragg angle will help us in acousto-optic instrument research with MLSAW.

© 2010 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.6690) Optics at surfaces : Surface waves
(260.0260) Physical optics : Physical optics
(340.0340) X-ray optics : X-ray optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 8, 2009
Revised Manuscript: March 7, 2010
Manuscript Accepted: March 12, 2010
Published: April 2, 2010

Citation
Jun Dong, Jianxia Qi, and Runcai Miao, "X-ray diffraction effect from surface acoustic waves traveling on a deposited multilayer," Appl. Opt. 49, 2054-2058 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Rogers, L. Dhar, and K. A. Nelson, “Noncontact determination of transverse isotropic elastic moduli in polyimide thin films using a laser based ultrasonic method,” Appl. Phys. Lett. 65, 312-314 (1994). [CrossRef]
  2. S. S. Hong, M. S. Mermelstein, and D. M. Freeman, “Reflective acousto-optic modulation with surface acoustic waves,” Appl. Opt. 43, 2920-2924 (2004). [CrossRef]
  3. R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89, 091108(2006). [CrossRef]
  4. M. E. Siemens, Q. Li, M. M. Murnane, H. C. Kapteyn, R. Yang, E. H. Anderson, and K. A. Nelson, “High-frequency surface acoustic wave propagation in nanostructures characterized by coherent extreme ultraviolet beams,” Appl. Phys. Lett. 94, 093103 (2009). [CrossRef]
  5. K. A. Ingebrigtsen and A. Tonning, “Elastic surface waves in crystals,” Phys. Rev. 184, 942-951 (1969). [CrossRef]
  6. J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485-499(1986). [CrossRef]
  7. P. F. Fewster, “X-ray analysis of thin films and multilayers,” Rep. Prog. Phys. 59, 1339-1407 (1996). [CrossRef]
  8. T. Nakao, M. Kadota, K. Nishiyama, Y. Nakai, D. Yamamoto, Y. Ishiura, T. Komura, N. Takada, and R. Kita, “Smaller surface acoustic wave duplexer for US personal communication service having good temperature characteristics,” Jpn. J. Appl. Phys. 46, 4760-4763 (2007). [CrossRef]
  9. C. Caliendo, “Theoretical and experimental investigation of gigahertz-band, temperature-compensated electromechanical coupling configurations based on AlN films,” Appl. Phys. Lett. 92, 033505 (2008). [CrossRef]
  10. S. Wu, R. Ro, Z. X. Lin, and M. S. Lee, “Rayleigh surface acoustic wave modes of interdigital transducer/(100) AlN/(111) diamond,” J. Appl. Phys. 104, 064919 (2008). [CrossRef]
  11. C. C. Sung, Y. F. Chiang, R. Ro, R. Lee, and S. Wu “Effects of conducting layers on surface acoustic wave in AlN films on diamond,” J. Appl. Phys. 106, 124905 (2009). [CrossRef]
  12. D. V. Roshchupkin, I. A. Schelokov, R. Tucoulou, and M. Brunel, “X-ray diffraction on a multilayer mirror modulated by surface acoustic waves,” Nucl. Instrum. Methods Phys. Res. B 129, 414-418 (1997). [CrossRef]
  13. D. V. Roshchupkin, R. Tucoulou, A. Masclet, M. Brunel, I. A. Schelokov, and A. S. Kondakov, “X-ray diffraction by standing surface acoustic waves,” Nucl. Instrum. Methods Phys. Res. B 142, 432-436 (1998). [CrossRef]
  14. A. V. Andreev, Yu. V. Ponomarev, L. R. Prudnikov, and N. N. Salashchenko, “X-ray diffuse scattering by multilayer waveguide structures,” Phys. Rev. B 57, 13113-13117 (1998). [CrossRef]
  15. D. V. Roshchupkin, R. Tucoulou, and M. Brunel, Appl. Phys. Lett. 75, 639 (1999). [CrossRef]
  16. W. Sauer, M. Streibl, T. H. Metzger, and A. G. C. Haubrich, “X-ray imaging and diffraction from surface phonons on GaAs,” Appl. Phys. Lett. 75, 1709-1711 (1999). [CrossRef]
  17. D. Shilo and E. Zolotoyabko, “Interaction of a surface wave with a dislocation,” Phys. Rev. Lett. 91, 115506 (2003). [CrossRef]
  18. M. Singh, M. F. Bal, J. J. M. Braat, D. Joyeux, and U. Dinger, “Wavefront correction methods for extreme-ultraviolet multilayer reflectors,” Appl. Opt. 42, 1847-1851 (2003). [CrossRef]
  19. S. H. Yang, B. C. Sell, and C. S. Fadley, “Probing multilayer spintronic structures with photoelectron and x-ray emission spectroscopies excited by x-ray standing waves,” J. Appl. Phys. 103, 07C519 (2008). [CrossRef]
  20. E. Descrovi, “Resonant diffraction of symmetric and antisymmetric Bloch surface waves on a corrugated periodic multilayer slab,” Opt. Lett. 34, 1973-1975 (2009). [CrossRef]
  21. E. Dieulesaint and D. Royer, Ondes Clastiques darts les solides (Masson, 1974).
  22. B. D. Duncan, “Visualization of surface acoustic waves by means of synchronous amplitude-modulated illumination,” Appl. Opt. 39, 2888-2895 (2000). [CrossRef]
  23. X. Zai and J. C. Cui, Applied Crystals Physics (China Science Press, 1984), p. 200 (in Chinese).
  24. M. Birkholz, Thin Film Analysis by X-Ray Scattering (Wiley-VCH, 2006), pp. 150-159.
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 60-62.
  26. R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80, 3033-3035 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited