OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2072–2078

Standoff detection of explosive substances at distances of up to 150 m

Anadi Mukherjee, Steven Von der Porten, and C. Kumar N. Patel  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2072-2078 (2010)
http://dx.doi.org/10.1364/AO.49.002072


View Full Text Article

Enhanced HTML    Acrobat PDF (1670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report detection and identification of trace quantities of explosives at standoff distances up to 150 m with high sensitivity (signal-to-noise ratio of 70 ) and high selectivity. The technique involves illuminating the target object with laser radiation at a wavelength that is strongly absorbed by the target. The resulting temperature rise is observed by remotely monitoring the increased blackbody radiation from the sample. An unambiguous determination of the target, TNT, in soil samples collected from an explosives test site in China Lake Naval Air Weapons Station is achieved through the use of a tunable CO 2 laser that scans over the absorption fingerprint of the target explosives. The theoretical analysis supports the observation and indicates that, with optimized detectors and data processing algorithms, the measurement capability can be improved significantly, permitting rapid standoff detection of explosives at distances approaching 1 km . The detection sensitivity varies as R 2 and, thus, with the availability of high power, room-temperature, tunable mid-wave infrared and long-wave infrared quantum cascade lasers, this technology may play an important role in screening personnel and their belongings at short distances, such as in airports, for detecting and identifying explosives material residue on persons.

© 2010 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.0140) Lasers and laser optics : Lasers and laser optics
(250.0250) Optoelectronics : Optoelectronics
(010.5630) Atmospheric and oceanic optics : Radiometry
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 29, 2009
Revised Manuscript: February 8, 2010
Manuscript Accepted: February 20, 2010
Published: April 2, 2010

Citation
Anadi Mukherjee, Steven Von der Porten, and C. Kumar N. Patel, "Standoff detection of explosive substances at distances of up to 150 m," Appl. Opt. 49, 2072-2078 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004). [CrossRef]
  2. G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005). [CrossRef]
  3. G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005). [CrossRef]
  4. M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002). [CrossRef]
  5. M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005). [CrossRef]
  6. M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005). [CrossRef]
  7. M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006). [CrossRef]
  8. A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008). [CrossRef] [PubMed]
  9. M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006). [CrossRef] [PubMed]
  10. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404(2007). [CrossRef] [PubMed]
  11. See for example, A. Mandelis, “Photothermal analysis of thermal properties of solids,” J. Therm. Anal. 37, 1065-1101 (1991). [CrossRef]
  12. K. Cottingham, “Ion mobility spectrometry rediscovered,” Anal. Chem. 75, 435A (2003). [CrossRef]
  13. R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001). [CrossRef]
  14. A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008). [CrossRef] [PubMed]
  15. For example, see VaporTracer from GE Industrial (www.geindustrial.com/ge-interlogix/iontrack) or IONSCAN 400B from Smiths Detection (www.smithsdetection.com).
  16. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).
  17. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775(2005). [CrossRef] [PubMed]
  18. The principles behind interference rejection, in the presence of overlapping optical absorption, are described in Ref. .
  19. Explosive materials include TNT, Tritonal (80% TNT and 20% aluminum powder), H6 (45% RDX, 30% TNT, 20% aluminum powder and 5% paraffin wax), Minol (40-48% TNT, 38-40% aluminum nitrate and 10-20% aluminum powder). See also http://www.mlmintl.com/MK-80series.pdf.
  20. M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919-3924 (1977). [CrossRef]
  21. P. W. Kruse, “A comparison of the limits to the performance of thermal and photon detector imaging arrays,” Infrared Phys. Technol. 36, 869-882 (1995). [CrossRef]
  22. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004). [CrossRef]
  23. F. J. Crawford, “Electro-optical sensors overview,” IEEE Aerosp. Electron. Syst. Mag. 13(10), 17-24 (1998). [CrossRef]
  24. N. H. Abu-Hamdeh and R. C. Reeder, “Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter,” Soil Sci. Soc. Am. J. 64, 1285-1290 (2000). [CrossRef]
  25. V.-R. Tarnawski and W. H. Leong, “Thermal conductivity of soils at very low moisture content and moderate temperatures,” Transp. Porous Media 41, 137-147 (2000). [CrossRef]
  26. F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960). [CrossRef]
  27. C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007). [CrossRef]
  28. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  29. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited